1.选择题- (共2题)
2.单选题- (共2题)
3.
如图,⊙P在第一象限,半径为3.动点A沿着⊙P运动一周,在点A运动的同时,作点A关于原点O的对称点B,再以AB为边作等边三角形△ABC,点C在第二象限,点C 随点A运动所形成的图形的面积为 ---------------------()


A.![]() | B.27π | C.![]() | D.![]() |
4.
如图,平面直角坐标系中,△ABC的顶点坐标分别是A(-3,1),B(-1,1),C(-2,2),当直线y﹦-
x+b与△ABC有公共点时,b的取值范围是()



A.-1≤b≤![]() | B.-1≤b≤1 | C.-![]() | D.-![]() ![]() |
3.填空题- (共3题)
4.解答题- (共3题)
8.
为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用
为625万元,乙种套房费用为700万元.
(1)甲、乙两种套房每套提升费用各多少万元?
(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?
(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?

(1)甲、乙两种套房每套提升费用各多少万元?
(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?
(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?
9.
小刚和小强相约晨练跑步,小刚比小强早1分钟离开家门,3分钟后迎面遇到从家跑来的小强.两人同路并行跑了2分钟后,决定进行长跑比赛,比赛时小刚的速度始终是180米/分,小强的速度始终是220米/分.下图是两人之间的距离y(米)与小刚离开家的时间x(分钟)之间的函数图象,根据图象回答下列问题:

(1)两人相遇之前,小刚的速度是 米/分,小强的速度是 米/分;
(2)求两人比赛过程中y与x之间的函数关系式;
(3)若比赛开始10分钟后,小强按原路以比赛时的速度返回,则再经过多少分钟两人相遇?

(1)两人相遇之前,小刚的速度是 米/分,小强的速度是 米/分;
(2)求两人比赛过程中y与x之间的函数关系式;
(3)若比赛开始10分钟后,小强按原路以比赛时的速度返回,则再经过多少分钟两人相遇?
试卷分析
-
【1】题量占比
选择题:(2道)
单选题:(2道)
填空题:(3道)
解答题:(3道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:3
7星难题:0
8星难题:1
9星难题:4