1.单选题- (共5题)
4.
某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为( )
A.![]() | B.![]() |
C.![]() | D.![]() |
2.选择题- (共2题)
6.
珍爱生命、善待生命是每一个人的职责。下列选项体现这一观点的是( )
①某同学在校园草坪上放置了一块牌子,上面写着“小草在休息,请不要打扰”
②尊重地球就是尊重生命,拯救地球就是拯救人类自身
③我们要积极保护珍稀濒危动植物
④人类为了更好的发展经济,可以使用科技手段无节制地过度开发自然资源
3.填空题- (共9题)
4.解答题- (共9题)
17.
已知数轴上点A对应的数是20,点B对应的数是﹣30,甲从A点出发以每秒1个单位长度的速度匀速运动,乙从B出发以每秒3个长度单位的速度匀速运动,若甲乙两人同时出发
(1)若甲和乙在数轴上运动3秒后,
①它们相距最远时,甲所在的位置对应的数是 ,乙所在的位置对应的数是
②它们距离最近时,甲所在的位置对应的数是 ,乙所在的位置对应的数是
(2)若甲和乙同时向右,出发多少秒后,甲和乙相距20个长度单位?
(3)若甲和乙进行匀速往返跑训练,甲从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点……;乙从B点起跑,到达A点后,立即转身跑向B点,到达B点后,又立即转身跑向A点……;两人同时出发,问:起跑后两人第二次相遇的时间是多少?
(1)若甲和乙在数轴上运动3秒后,
①它们相距最远时,甲所在的位置对应的数是 ,乙所在的位置对应的数是
②它们距离最近时,甲所在的位置对应的数是 ,乙所在的位置对应的数是
(2)若甲和乙同时向右,出发多少秒后,甲和乙相距20个长度单位?
(3)若甲和乙进行匀速往返跑训练,甲从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点……;乙从B点起跑,到达A点后,立即转身跑向B点,到达B点后,又立即转身跑向A点……;两人同时出发,问:起跑后两人第二次相遇的时间是多少?

20.
十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,请你观察下列几种简单多面体模型,解答下列问题:

图1 图2
(探索新知)如图1,(1)根据上面多面体模型,完成表格中的空格;
你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是 .
(2)根据以上关系式猜想是否存在一个多面体,它有16个面,50条棱,34个顶点?并写出理由。
(实际应用)如图2,足球一般有32块黑白皮子缝合而成,黑色的是正五边形,白色的是正六边形,如
果我们近似把足球看成一个多面体.
(1)设黑色的正五边形有x块,则白色的正六边形有(32﹣x)块,当把足球看成一个多面体时,它的棱数是 ,它的顶点数是 .
(2)求出黑皮和白皮各有多少块?


图1 图2
(探索新知)如图1,(1)根据上面多面体模型,完成表格中的空格;
多面体 | 顶点数(V) | 面数(F) | 棱数(E) |
四面体 | 4 | 4 | |
长方体 | 8 | 6 | 12 |
正八面体 | | 8 | 12 |
正十二面体 | 20 | 12 | 30 |
你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是 .
(2)根据以上关系式猜想是否存在一个多面体,它有16个面,50条棱,34个顶点?并写出理由。
(实际应用)如图2,足球一般有32块黑白皮子缝合而成,黑色的是正五边形,白色的是正六边形,如
果我们近似把足球看成一个多面体.
(1)设黑色的正五边形有x块,则白色的正六边形有(32﹣x)块,当把足球看成一个多面体时,它的棱数是 ,它的顶点数是 .
(2)求出黑皮和白皮各有多少块?
24.
我们知道分数
写为小数即
,反之,无限循环小数
写成分数即
.
一般地,任何一个无限循环小数都可以写成分数形式.
例如:把
写成分数形式时,设
=
,则
=0.5555…=0.5+0.05555…=
解一元一次方程
,解得:
,所以
=
.
(1)模仿上述过程,把无限循环小数0.
写成分数形式;
(2)你能把无限循环小数
化成分数形式吗?




一般地,任何一个无限循环小数都可以写成分数形式.
例如:把





解一元一次方程




(1)模仿上述过程,把无限循环小数0.

(2)你能把无限循环小数

试卷分析
-
【1】题量占比
单选题:(5道)
选择题:(2道)
填空题:(9道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:18
7星难题:0
8星难题:1
9星难题:4