1.单选题- (共6题)
3.
继2017年北仓区经济总量迈上1000亿元的新台阶,2018年再创新高,全年生产总值约1147亿元,1147亿用科学记数法表示为( )
A.1.147×108 | B.1.147×109 | C.1.147×1010 | D.1.147×1011 |
5.
如图,将曲线c1:y=
(x>0)绕原点O逆时针旋转60°得到曲线c2,A为直线y=
x上一点,P为曲线c2上一点,PA=PO,且△PAO的面积为6
,直线y=
x交曲线c1于点B,则OB的长( )






A.2![]() | B.5 | C.3![]() | D.![]() |
2.填空题- (共4题)
9.
如图,在矩形纸片ABCD中,BM,DN分别平分∠ABC,∠CDA,沿BP折叠,点A恰好落在BM上的点E处,延长PE交DN于点F沿DQ折叠,点C恰好落在DN上的点G处,延长QG交BM于点H,若四边形EFGH恰好是正方形,且边长为1,则矩形ABCD的面积为____ .

3.解答题- (共5题)
12.
某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.
(1)求修建一个足球场和一个篮球场各需多少万元?
(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?
(1)求修建一个足球场和一个篮球场各需多少万元?
(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?
13.
如图,在平面直角坐标系中,直线
分别交x轴,y轴于点A,B抛物线
经过点A,且交x轴于另外一点C,交y轴于点D.
(1)求抛物线的表达式;
(2)求证:AB⊥BC;
(3)点P为x轴上一点,过点P作x轴的垂线交直线AB于点M,交抛物线于点Q,连结DQ,设点P的横坐标为m,当以B,D,Q,M为顶点的四边形是平行四边形时,求m的值.


(1)求抛物线的表达式;
(2)求证:AB⊥BC;
(3)点P为x轴上一点,过点P作x轴的垂线交直线AB于点M,交抛物线于点Q,连结DQ,设点P的横坐标为m,当以B,D,Q,M为顶点的四边形是平行四边形时,求m的值.

14.
如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做“半高三角形”.
如图1,对于△ABC,BC边上的高AD等于BC的一半,△ABC就是半高三角形,此时,称△ABC是BC类半高三角形;如图2,对于△EFG,EF边上的高GH等于EF的一半,△EFG就是半高三角形,此时,称△EFG是EF类半高三角形.
(1)直接写出下列3个小题的答案.
①若一个三角形既是等腰三角形又是半高三角形,则其底角度数的所有可能值为 .
②若一个三角形既是直角三角形又是半高三角形,则其最小角的正切值为 .
③如图3,正方形网格中,L,M是已知的两个格点,若格点N使得△LMN为半高三角形,且△LMN为等腰三角形或直角三角形,则这样的格点N共有 个.
(2)如图,平面直角坐标系内,直线y=x+2与抛物线y=x2交于R,S两点,点T坐标为(0,5),点P是抛物线y=x2上的一个动点,点Q是坐标系内一点,且使得△RSQ为RS类半高三角形.
①当点P介于点R与点S之间(包括点R,S),且PQ取得最小值时,求点P的坐标.
②当点P介于点R与点O之间(包括点R,O)时,求PQ+
QT的最小值.
如图1,对于△ABC,BC边上的高AD等于BC的一半,△ABC就是半高三角形,此时,称△ABC是BC类半高三角形;如图2,对于△EFG,EF边上的高GH等于EF的一半,△EFG就是半高三角形,此时,称△EFG是EF类半高三角形.
(1)直接写出下列3个小题的答案.
①若一个三角形既是等腰三角形又是半高三角形,则其底角度数的所有可能值为 .
②若一个三角形既是直角三角形又是半高三角形,则其最小角的正切值为 .
③如图3,正方形网格中,L,M是已知的两个格点,若格点N使得△LMN为半高三角形,且△LMN为等腰三角形或直角三角形,则这样的格点N共有 个.
(2)如图,平面直角坐标系内,直线y=x+2与抛物线y=x2交于R,S两点,点T坐标为(0,5),点P是抛物线y=x2上的一个动点,点Q是坐标系内一点,且使得△RSQ为RS类半高三角形.
①当点P介于点R与点S之间(包括点R,S),且PQ取得最小值时,求点P的坐标.
②当点P介于点R与点O之间(包括点R,O)时,求PQ+


试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:5
7星难题:0
8星难题:3
9星难题:6