1.单选题- (共6题)
4.
如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正确的结论有( )个.


A.3 | B.4 | C.2 | D.1 |
5.
在一条笔直的公路上有
、
两地,甲乙两人同时出发,甲骑自行车从
地到
地,乙骑自行车从
地到
地,到达
地后立即按原路返回
地.如图是甲、乙两人离
地的距离
与行驶时间
之间的函数图象,下列说法中①
、
两地相距30千米;②甲的速度为15千米/时;③点
的坐标为(
,20);④当甲、乙两人相距10千米时,他们的行驶时间是
小时或
小时. 正确的个数为( )



















A.1个 | B.2个 | C.3个 | D.4个 |
2.填空题- (共5题)
3.解答题- (共5题)
13.
山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.
(1)求二月份每辆车售价是多少元?
(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?
(1)求二月份每辆车售价是多少元?
(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?
14.
“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为
元/件,每天销售
(件)与销售单价
(元)之间存在一次函数关系,如图所示.

(1)求
与
之间的函数关系;
(2)如果规定每天漆器笔筒的销售量不低于
件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于
元,试确定该漆器笔筒销售单价的范围.




(1)求


(2)如果规定每天漆器笔筒的销售量不低于

(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于

15.
如图,二次函数y=ax2+bx+c的图象交x轴于A(-2,0),B(1,0),交y轴于C(0,2);
(1)求二次函数的解析式;
(2)连接AC,在直线AC上方的抛物线上是否存在点N,使△NAC的面积最大,若存在,求出这个最大值及此时点N的坐标,若不存在,说明理由.
(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由.
(4)若P为抛物线上一点,过P作PQ⊥BC于Q,在y轴左侧的抛物线是否存在点P使△CPQ∽△BCO(点C与点B对应),若存在,求出点P的坐标,若不存在,说明理由.
(1)求二次函数的解析式;
(2)连接AC,在直线AC上方的抛物线上是否存在点N,使△NAC的面积最大,若存在,求出这个最大值及此时点N的坐标,若不存在,说明理由.
(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由.
(4)若P为抛物线上一点,过P作PQ⊥BC于Q,在y轴左侧的抛物线是否存在点P使△CPQ∽△BCO(点C与点B对应),若存在,求出点P的坐标,若不存在,说明理由.

试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(5道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:11
7星难题:0
8星难题:2
9星难题:2