1.单选题- (共10题)
5.
某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率,该绿化组完成的绿化面积 S(单位:m2)与工作时间 t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )


A.150 m2 | B.300 m2 | C.330 m2 | D.450 m2 |
7.
如图所示,已知:点A(0,0),B(
,0),C(0,1).在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于( )



A.![]() | B.![]() | C.![]() | D.![]() |
2.选择题- (共2题)
3.填空题- (共5题)
16.
根据三角形外心的概念,我们可引入下一个新定义:
定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.
根据准外心的定义,探究如下问题:如图,在Rt△ABC中,∠A=90°,BC=10,AB=6,如果准外心P在AC边上,那么PA的长为_____.
定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.
根据准外心的定义,探究如下问题:如图,在Rt△ABC中,∠A=90°,BC=10,AB=6,如果准外心P在AC边上,那么PA的长为_____.

4.解答题- (共7题)
20.
甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山上升的速度是每分钟 米,乙在A地时距地面的高度b为 米.
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.
(3)登山多长时间时,甲、乙两人距地面的高度差为50米?
(1)甲登山上升的速度是每分钟 米,乙在A地时距地面的高度b为 米.
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.
(3)登山多长时间时,甲、乙两人距地面的高度差为50米?

22.
如图,直线y=﹣
x+1与x轴、y轴分别交于点A、B,以线段AB为直角边在第﹣象限内作等腰直角△ABC,∠BAC=90°,
(1)求点A、B、C的坐标;
(2)如果在第二象限内有﹣点P(a,
),且△ABP的面积与△ABC的面积相等,求a的值;
(3)请直接写出点Q的坐标,使得以Q、A、C为顶点的三角形和△ABC全等.

(1)求点A、B、C的坐标;
(2)如果在第二象限内有﹣点P(a,

(3)请直接写出点Q的坐标,使得以Q、A、C为顶点的三角形和△ABC全等.

23.
已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接B

A. (1)求证:△BAD≌△CAE; (2)请判断BD、CE有何大小、位置关系,并证明. |

试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(2道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:11
7星难题:0
8星难题:6
9星难题:3