1.单选题- (共8题)
6.
某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同.设现在每天生产x台机器,根据题意可得方程为( )
A.![]() | B.![]() | C.![]() | D.![]() |
8.
如图,反比例函数y=
(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是( )



A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共6题)
11.
已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:
则关于x的一元二次方程ax2+bx+c=-2的根是______.
x | … | -5 | -4 | -3 | -2 | -1 | … |
y | … | 3 | -2 | -5 | -6 | -5 | … |
则关于x的一元二次方程ax2+bx+c=-2的根是______.
3.解答题- (共6题)
18.
已知,如图1,直线y=
x+3与x轴、y轴分别交于A、C两点,点B在x轴上,点B的横坐标为
,抛物线经过A、B、C三点.点D是直线AC上方抛物线上任意一点.
(1)求抛物线的函数关系式;
(2)若P为线段AC上一点,且S△PCD=2S△PAD,求点P的坐标;
(3)如图2,连接OD,过点A、C分别作AM⊥OD,CN⊥OD,垂足分别为M、N.当AM+CN的值最大时,求点D的坐标.


(1)求抛物线的函数关系式;
(2)若P为线段AC上一点,且S△PCD=2S△PAD,求点P的坐标;
(3)如图2,连接OD,过点A、C分别作AM⊥OD,CN⊥OD,垂足分别为M、N.当AM+CN的值最大时,求点D的坐标.

19.
由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=﹣2x+1000.
(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;
(2)若要使每月的利润为40000元,销售单价应定为多少元?
(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?
(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;
(2)若要使每月的利润为40000元,销售单价应定为多少元?
(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?
试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(6道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:14
7星难题:0
8星难题:1
9星难题:3