1.单选题- (共9题)
5.
如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点( )


A.(-1,1) | B.(-2,-1) | C.(-3,1) | D.(1,-2) |
2.填空题- (共7题)
3.解答题- (共8题)
20.
如图,将三角形ABC向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:

(1)平移后的三个顶点坐标分别为:A1 ,B1 ,C1 ;
(2)画出平移后三角形A1B1C1;
(3)求三角形ABC的面积.

(1)平移后的三个顶点坐标分别为:A1 ,B1 ,C1 ;
(2)画出平移后三角形A1B1C1;
(3)求三角形ABC的面积.
21.
已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.请将下面的推理过程补充完整.

证明:FH⊥AB(已知)
∴∠BHF= °.( )
∵∠1=∠ACB(已知)
∴DE∥BC( )
∴∠2= .( )
∵∠2=∠3(已知)
∴∠3= .( )
∴CD∥FH( )
∴∠BDC=∠BHF= °.( )
∴CD⊥AB.

证明:FH⊥AB(已知)
∴∠BHF= °.( )
∵∠1=∠ACB(已知)
∴DE∥BC( )
∴∠2= .( )
∵∠2=∠3(已知)
∴∠3= .( )
∴CD∥FH( )
∴∠BDC=∠BHF= °.( )
∴CD⊥AB.
22.
(1)问题发现:如图①,直线AB∥CD,E是AB与CD之间的一点,连接BE,CE,可以发现∠B+∠C=∠BEC.

请把下面的证明过程补充完整:
证明:过点E作EF∥AB,
∵AB∥DC(已知),EF∥AB(辅助线的作法),
∴EF∥DC( )
∴∠C=∠CE
∵EF∥AB,∴∠B=∠BEF(同理),
∴∠B+∠C= (等式性质)
即∠B+∠C=∠BEC.
(2)拓展探究:如果点E运动到图②所示的位置,其他条件不变,求证:∠B+∠C=360°﹣∠BEC.
(3)解决问题:如图③,AB∥DC,试写出∠A、∠C、∠AEC的数量关系 .(直接写出结论,不用写计算过程)

请把下面的证明过程补充完整:
证明:过点E作EF∥AB,
∵AB∥DC(已知),EF∥AB(辅助线的作法),
∴EF∥DC( )
∴∠C=∠CE
A.( ) |
∴∠B+∠C= (等式性质)
即∠B+∠C=∠BEC.
(2)拓展探究:如果点E运动到图②所示的位置,其他条件不变,求证:∠B+∠C=360°﹣∠BEC.
(3)解决问题:如图③,AB∥DC,试写出∠A、∠C、∠AEC的数量关系 .(直接写出结论,不用写计算过程)
试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(7道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:15
7星难题:0
8星难题:3
9星难题:5