1.单选题- (共9题)
3.
现用190张铁皮制作一批盒子,每张铁皮可做8个盒身或做22个盒底,而一个盒身和两个盒底配成一个完整的盒子.问用多少张白铁皮制盒身、多少张白铁皮制盒底,可以使盒身和盒底正好配套.设用x张铁皮做盒身,y张铁皮做盒底,可以使盒身与盒底正好配套,则可列方程是( )
A.![]() | B.![]() | C.![]() | D.![]() |
7.
如图,在△AEC中,点D和点F分别是AC和AE上的两点,连接DF,交CE的延长线于点B,若∠A=25°,∠B=45°,∠C=36°,则∠DFE=( )


A.103° | B.104° | C.105° | D.106° |
8.
抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( )


A.20,20 | B.30,20 | C.30,30 | D.20,30 |
2.填空题- (共8题)
13.
如图,直线y=﹣
x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为_____.


3.解答题- (共6题)
19.
某公园的门票价格如下表:
实验学校初二(1)、二(2)两个班的学生共104人去公园游玩,其中二(1)班的人数不到50人,二(2)班的人数有50多人,经估算,如果两个班都以班为单位分别购票,则一共应付1240元,如果两班联合起来,作为一个团体购票,则可节省不少钱,你能否求出两个班各有多少名学生?联合起来购票能省多少钱?
购票人数 | 1﹣50人 | 51﹣100人 | 100人以上 |
每人门票数 | 13元 | 11元 | 9元 |
实验学校初二(1)、二(2)两个班的学生共104人去公园游玩,其中二(1)班的人数不到50人,二(2)班的人数有50多人,经估算,如果两个班都以班为单位分别购票,则一共应付1240元,如果两班联合起来,作为一个团体购票,则可节省不少钱,你能否求出两个班各有多少名学生?联合起来购票能省多少钱?
20.
阅读下列一段文字,然后回答下列问题.
已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离P1P2=
,
同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2–x1|或|y2–y1|.
(1)已知A(2,4)、B(–3,–8),试求A、B两点间的距离;
(2)已知A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为–1,试求A、B两点间的距离;
(3)已知一个三角形各顶点坐标为D(1,6)、E(–2,2)、F(4,2),你能判定此三角形的形状吗?说明理由;
(4)在(3)的条件下,平面直角坐标中,在x轴上找一点P,使PD+PF的长度最短,求出点P的坐标以及PD+PF的最短长度.
已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离P1P2=

同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2–x1|或|y2–y1|.
(1)已知A(2,4)、B(–3,–8),试求A、B两点间的距离;
(2)已知A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为–1,试求A、B两点间的距离;
(3)已知一个三角形各顶点坐标为D(1,6)、E(–2,2)、F(4,2),你能判定此三角形的形状吗?说明理由;
(4)在(3)的条件下,平面直角坐标中,在x轴上找一点P,使PD+PF的长度最短,求出点P的坐标以及PD+PF的最短长度.
试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(8道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:16
7星难题:0
8星难题:2
9星难题:5