1.单选题- (共7题)
3.
工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度与M、N重合,过角尺顶点C作射线OC.那么判定△MOC≌△NOC的依据是( )


A.边角边 | B.边边边 C.角边角 | C.角角边 |
4.
利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是( )


A.(a+b)(a﹣b)=a2﹣b2 | B.(a﹣b)2=a2﹣2ab+b2 |
C.a(a+b)=a2+ab | D.a(a﹣b)=a2﹣ab |
7.
工人师傅常用角尺平分一个任意角,具体做法如下:如图,已知
是一个任意角,在边
上分别取
,移动角尺,使角尺两边相同的刻度分别与点
重合,则过角尺顶点
的射线
便是
角平分线.在证明
≌
时运用的判定定理是( )











A.![]() | B.![]() | C.![]() | D.![]() |
2.选择题- (共1题)
3.填空题- (共6题)
13.
如图所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E,F为圆心,大于
EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为 . 


4.解答题- (共8题)
18.
(1)感知:如图①.AB=AD,AB⊥AD,BF⊥AF于点F,DG⊥AF于点
(2)拓展:如图②,点B,C在∠MAN的边AM,AN上,点E,F在∠MAN在内部的射线AD上,∠1,∠2分别是△ABE,△CAF的外角,已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;
(3)应用:如图③,在△ABC中,AB=AC,AB>BC,点在D边BC上,CD=2BD,点E,F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为12,则△ABE与△CDF的面积之和为 .
A.求证:△ADG≌△BAF; |
(3)应用:如图③,在△ABC中,AB=AC,AB>BC,点在D边BC上,CD=2BD,点E,F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为12,则△ABE与△CDF的面积之和为 .

试卷分析
-
【1】题量占比
单选题:(7道)
选择题:(1道)
填空题:(6道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:4
7星难题:0
8星难题:10
9星难题:7