1.单选题- (共8题)
5.
甲、乙两人在笔直的公路上问起点、同终点、同方向匀速步行2400米,先到终点的人原地体息已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时向t(分)之间的函数关系如图所示,下列说法中正确的是( )


A.甲步行的速度为8米/分 |
B.乙走完全程用了34分钟 |
C.乙用16分钟追上甲 |
D.乙到达终点时,甲离终点还有360米 |
2.填空题- (共8题)
3.解答题- (共7题)
18.
在运动会前夕,光明中学都会购买篮球、足球作为奖品.若购买6个篮球和8个足球共花费1700元,且购买一个篮球比购买一个足球多花50元.
(1)求购买一个篮球,一个足球各需多少元;
(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1150元,则最多可购买多少个?
(1)求购买一个篮球,一个足球各需多少元;
(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1150元,则最多可购买多少个?
19.
已知:在平面直角坐标系中,点O为坐标原点,直线y=﹣
x+b与x轴交于点A,与y轴交于点C.经过点A,C的抛物线y=ax2+3ax﹣3与x轴的另一个交点为点B.
(1)如图1,求a的值;
(2)如图2,点D,E分别在线段AC,AB上,且BE=2AD,连接DE,将线段DE绕点D顺时针旋转得到线段DF,且旋转角∠EDF=∠OAC,连接CF,求tan∠ACF的值;
(3)如图3,在(2)的条件下,当∠DFC=135°时,在线段AC的延长线上取点M,过点M作MN∥DE交抛物线于点N,连接DN,EM,若MN=DF,求点N的横坐标.

(1)如图1,求a的值;
(2)如图2,点D,E分别在线段AC,AB上,且BE=2AD,连接DE,将线段DE绕点D顺时针旋转得到线段DF,且旋转角∠EDF=∠OAC,连接CF,求tan∠ACF的值;
(3)如图3,在(2)的条件下,当∠DFC=135°时,在线段AC的延长线上取点M,过点M作MN∥DE交抛物线于点N,连接DN,EM,若MN=DF,求点N的横坐标.

20.
在6×4的方格纸中,△ABC的三个顶点都在格点上
(1)在图中画出线段BD,使BD∥AC,其中D是格点;
(2)在图中画出线段BE,使BE⊥AC,其中E是格点,连接DE,并直接写出∠BED的度数.
(1)在图中画出线段BD,使BD∥AC,其中D是格点;
(2)在图中画出线段BE,使BE⊥AC,其中E是格点,连接DE,并直接写出∠BED的度数.

21.
如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,连接BE,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC;
(2)在不添加任何辅助线的情况下,请直接写出图中四个三角形,使写出的每个三角形的面积等于△AEF面积的2倍.
(1)求证:AF=DC;
(2)在不添加任何辅助线的情况下,请直接写出图中四个三角形,使写出的每个三角形的面积等于△AEF面积的2倍.

22.
已知:四边形ABCD内接于⊙O,∠ADC=90°,DE⊥AB,垂足为点E,DE的锯长线交⊙O于点F,DC的延长线与FB的延长线交于点G.
(1)如图1,求证:GD=GF;
(2)如图2,过点B作BH⊥AD,垂足为点M,B交DF于点P,连接OG,若点P在线段OG上,且PB=PH,求∠ADF的大小;
(3)如图3,在(2)的条件下,点M是PH的中点,点K在
上,连接DK,PC,D交PC点N,连接MN,若AB=12
,HM+CN=MN,求DK的长.
(1)如图1,求证:GD=GF;
(2)如图2,过点B作BH⊥AD,垂足为点M,B交DF于点P,连接OG,若点P在线段OG上,且PB=PH,求∠ADF的大小;
(3)如图3,在(2)的条件下,点M是PH的中点,点K在



试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(8道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:5
5星难题:0
6星难题:8
7星难题:0
8星难题:4
9星难题:5