1.单选题- (共8题)
2.选择题- (共1题)
9.
当你收到异性朋友的来信,信中表达对你很喜欢,并要求你做对方的朋友时,你可以( )
①对之不予理睬
②坦诚告诉对方,现在是学习的黄金时期,可以保持纯洁的友谊
③在全班同学面前公开信的内容,让其他同学都来嘲笑对方
④写回信答应做对方的朋友,并与之交往密切
3.填空题- (共5题)
4.解答题- (共7题)
15.
阅读下列推理过程,在括号中填写理由.
已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BA
证明:∵AE平分∠BAC(已知)
∴∠1=∠2( )
∵AC∥DE(已知)
∴∠1=∠3( )
故∠2=∠3( )
∵DF∥AE(已知)
∴∠2=∠5,( )
∠3=∠4( )
∴∠4=∠5( )
∴DF平分∠BDE( )
已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BA
A.求证:DF平分∠BDE |
∴∠1=∠2( )
∵AC∥DE(已知)
∴∠1=∠3( )
故∠2=∠3( )
∵DF∥AE(已知)
∴∠2=∠5,( )
∠3=∠4( )
∴∠4=∠5( )
∴DF平分∠BDE( )

17.
如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并证明你的结论.

解:∠C与∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义)
∴∠2=________.(________.),
∴AB∥EF(________.)
∴∠3=________.(________.)
又∠B=∠3(已知)
∴∠B=________.(等量代换)
∴DE∥BC(________.)
∴∠C=∠AED(________.).

解:∠C与∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义)
∴∠2=________.(________.),
∴AB∥EF(________.)
∴∠3=________.(________.)
又∠B=∠3(已知)
∴∠B=________.(等量代换)
∴DE∥BC(________.)
∴∠C=∠AED(________.).
18.
(1)请在横线上填写合适的内容,完成下面的证明:
如图1,AB∥CD,求证:∠B+∠D=∠BED.
证明:过点E引一条直线EF∥AB
∴∠B=∠BEF,(___________)
∵AB∥CD,EF∥AB
∴EF∥CD(___________)
∴∠D=________(___________)
∴∠B+∠D=∠BEF+∠FED
即∠B+∠D=∠BED.
(2)如图2,AB∥CD,请写出∠B+∠BED+∠D=360°的推理过程.________
(3)如图3,AB∥CD,请直接写出结果∠B+∠BEF+∠EFD+∠D=________
如图1,AB∥CD,求证:∠B+∠D=∠BED.
证明:过点E引一条直线EF∥AB
∴∠B=∠BEF,(___________)
∵AB∥CD,EF∥AB
∴EF∥CD(___________)
∴∠D=________(___________)
∴∠B+∠D=∠BEF+∠FED
即∠B+∠D=∠BED.
(2)如图2,AB∥CD,请写出∠B+∠BED+∠D=360°的推理过程.________
(3)如图3,AB∥CD,请直接写出结果∠B+∠BEF+∠EFD+∠D=________

试卷分析
-
【1】题量占比
单选题:(8道)
选择题:(1道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:9
7星难题:0
8星难题:6
9星难题:3