1.单选题- (共10题)
3.
如图,下列6种说法:①∠1与∠4是内错角;②∠1与∠2是同位角;③∠2与∠4是内错角;④∠4与∠5是同旁内角;⑤∠2与∠4是同位角;⑥∠2与∠5是内错角.其中正确的有 ( )

A.1个 | B.2个 | C.3个 | D.4个 |
2.选择题- (共1题)
3.填空题- (共7题)
13.
如图.下列三个条件:①AB∥CD,②∠B=∠C.③∠E=∠F.从中任选两个作为条件,另一个作为结论,编一道数学题,并说明理由.
已知:________ ;
结论:________ ;
理由:________.
已知:________ ;
结论:________ ;
理由:________.

14.
如图,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°.求:∠DCE和∠DCA的度数.

请将以下解答补充完整,
解:因为∠DAB+∠D=180°
所以DC∥AB__________
所以∠DCE=∠B__________
又因为∠B=95°,
所以∠DCE=________°;
因为AC平分∠DAB,∠CAD=25°,根据角平分线定义,
所以∠CAB=________=________°,
因为DC∥AB
所以∠DCA=∠CAB,__________
所以∠DCA=________°.

请将以下解答补充完整,
解:因为∠DAB+∠D=180°
所以DC∥AB__________
所以∠DCE=∠B__________
又因为∠B=95°,
所以∠DCE=________°;
因为AC平分∠DAB,∠CAD=25°,根据角平分线定义,
所以∠CAB=________=________°,
因为DC∥AB
所以∠DCA=∠CAB,__________
所以∠DCA=________°.
18.
如图,在△ABC中,分别以点A和点B为圆心,大于
AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为_____.


4.解答题- (共4题)
20.
如图,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°.
(1)请判断AB与CD的位置关系并说明理由;
(2)如图,在(1)的结论下,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;
(3)如图,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(点C除外),∠CPQ+∠CQP与∠BAC有什么数量关系?并说明理由。
(1)请判断AB与CD的位置关系并说明理由;
(2)如图,在(1)的结论下,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;
(3)如图,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(点C除外),∠CPQ+∠CQP与∠BAC有什么数量关系?并说明理由。

21.
在下面的解题过程的横线上填空,并在括号内注明理由
.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.

解:∵∠A=∠F(已知)
∴AC∥DF( )
∴∠D=∠ ( )
又∵∠C=∠D(已知)
∴∠1=∠C(等量代换)
∴BD∥CE( )
.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.

解:∵∠A=∠F(已知)
∴AC∥DF( )
∴∠D=∠ ( )
又∵∠C=∠D(已知)
∴∠1=∠C(等量代换)
∴BD∥CE( )
试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(1道)
填空题:(7道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:6
7星难题:0
8星难题:12
9星难题:3