1.单选题- (共11题)
3.
《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱
;如果乙得到甲所有钱的三分之二,那么乙也共有
.问甲、乙两人各带了多少钱?设甲带钱为
,乙带钱为
,根据题意,可列方程组为( )
A.
B.
C.
D. 




A.




9.
在平面直角坐标系中,对于点P(x,y),我们把点P'(﹣y+1,x+1)叫做点P伴随点已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2A3,…,An,…若点A1的坐标为(2,4),点A2019的坐标为( )
A.(﹣3,3) | B.(﹣2,﹣2) | C.(3,﹣1) | D.(2,4) |
10.
将一直角三角板与两边平行的硬纸条如图所示放置,下列结论(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其中错误的个数是( )


A.0 | B.1 | C.2 | D.3 |
11.
数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题. 例如:如果a>2,那么
. 下列命题中,具有以上特征的命题是

A.两直线平行,同位角相等 | B.如果![]() ![]() |
C.全等三角形的对应角相等 | D.如果![]() ![]() |
2.填空题- (共6题)
3.解答题- (共5题)
21.
直线AB∥CD,直线EF分别交AB、CD于点A、C,CM是∠ACD的平分线,CM交AB于点N.
(1)如图①,过点A作AC的垂线交CM于点M,若∠MCD=55°,求∠MAN的度数;
(2)如图②,点G是CD上的一点,连接MA、MG,若MC平分∠AMG且∠AMG=36°,∠MGD+∠EAB=180°,求∠ACD的度数.
(1)如图①,过点A作AC的垂线交CM于点M,若∠MCD=55°,求∠MAN的度数;
(2)如图②,点G是CD上的一点,连接MA、MG,若MC平分∠AMG且∠AMG=36°,∠MGD+∠EAB=180°,求∠ACD的度数.

22.
据调查,初中学生课桌椅不合格率达76.7%(不合格是指不能按照学生不同的身高来调节课桌椅的高度),为了解初中生的身高情况,随机抽取了某校初中部分男生、女生进行调查收集数据如下:
男生身高(单位:cm):163 161 160 163 161 162 163 164 163 163
女生身高(单位:cm):164 161 160 161 161 162 160 162 163 162
整理数据:
根据以上信息,解答下列问题:
(1)填空:a= ,b= ,并补全条形统计图;
(2)现有两名身高都为163cm的男生和女生,比较这两名同学分别在男生、女生中的身高情况,并简述理由;
(3)根据相关研究发现,只有身高为161cm的初中生课桌椅是合格的,试估计全校1000名学生中,有多少名学生的课桌椅是合格的?
男生身高(单位:cm):163 161 160 163 161 162 163 164 163 163
女生身高(单位:cm):164 161 160 161 161 162 160 162 163 162
整理数据:
| 160 | 161 | 162 | 163 | 164 |
男生(人) | 1 | 2 | 1 | a | 1 |
女生(人) | 2 | b | 3 | 1 | 1 |
根据以上信息,解答下列问题:
(1)填空:a= ,b= ,并补全条形统计图;
(2)现有两名身高都为163cm的男生和女生,比较这两名同学分别在男生、女生中的身高情况,并简述理由;
(3)根据相关研究发现,只有身高为161cm的初中生课桌椅是合格的,试估计全校1000名学生中,有多少名学生的课桌椅是合格的?

试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(6道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:19
7星难题:0
8星难题:0
9星难题:3