1.单选题- (共2题)
1.
在证券交易过程中,常用到两种曲线,即时价格曲线
及平均价格曲线
(如
是指开始买卖后二个小时的即时价格为3元;
表示二个小时内的平均价格为3元),在下图给出的四个图像中实线表示
,虚线表示
其中可能正确的是 ( ).






A.![]() | B.![]() | C.![]() | D.![]() |
2.选择题- (共5题)
3.填空题- (共1题)
4.解答题- (共4题)
9.
已知函数y=f(x)的图象(如图所示)过点(0,2)、(1.5,2)和点(2,0),且函数图象关于点(2,0)对称;直线x=1和x=3及y=0是它的渐近线.现要求根据给出的函数图象研究函数g(x)=
的相关性质与图象.
(1)写出函数y=g(x)的定义域、值域及单调递增区间;
(2)作函数y=g(x)的大致图象(要充分反映由图象及条件给出的信息);
(3)试写出y=f(x)的一个解析式,并简述选择这个式子的理由(按给出理由的完整性及表达式的合理、简洁程度分层给分).

(1)写出函数y=g(x)的定义域、值域及单调递增区间;
(2)作函数y=g(x)的大致图象(要充分反映由图象及条件给出的信息);
(3)试写出y=f(x)的一个解析式,并简述选择这个式子的理由(按给出理由的完整性及表达式的合理、简洁程度分层给分).

11.
由下面四个图形中的点数分别给出了四个数列的前四项,将每个图形的层数增加可得到这四个数列的后继项.按图中多边形的边数依次称这些数列为“三角形数列”、“四边形数列”…,将构图边数增加到n可得到“n边形数列”,记它的第r项为P(n,r).

(1)求使得P(3,r)>36的最小r的取值;
(2)试推导P(n,r)关于n、r的解析式;
(3)是否存在这样的“n边形数列”,它的任意连续两项的和均为完全平方数.若存在,指出所有满足条件的数列,并证明你的结论;若不存在,请说明理由.

(1)求使得P(3,r)>36的最小r的取值;
(2)试推导P(n,r)关于n、r的解析式;
(3)是否存在这样的“n边形数列”,它的任意连续两项的和均为完全平方数.若存在,指出所有满足条件的数列,并证明你的结论;若不存在,请说明理由.
试卷分析
-
【1】题量占比
单选题:(2道)
选择题:(5道)
填空题:(1道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:7