1.单选题- (共8题)
4.
已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是( )


A.﹣![]() | B.﹣![]() | C.﹣2<m<3 | D.﹣6<m<﹣2 |
7.
已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( )
A.3.61×106 | B.3.61×107 | C.3.61×108 | D.3.61×109 |
2.选择题- (共2题)
3.填空题- (共5题)
4.解答题- (共6题)
18.
一家商店销售某种商品,平均每天可售出20件,每件盈利40元为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件
(1)若降价3元,则平均每天销售数量为 件;
(2)求每件商品降价多少元时,该商店每天销售利润为1200元?
(3)求每件商品降价多少元时,该商店每天销售利润的最大值是多少元?
(1)若降价3元,则平均每天销售数量为 件;
(2)求每件商品降价多少元时,该商店每天销售利润为1200元?
(3)求每件商品降价多少元时,该商店每天销售利润的最大值是多少元?
19.
如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B,交x轴正半轴于点C.
(1)求该抛物线的函数表达式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标;
(3)将点A绕原点旋转得点A′,连接CA′、BA′,在旋转过程中,一动点M从点B出发,沿线段BA′以每秒3个单位的速度运动到A′,再沿线段A′C以每秒1个单位长度的速度运动到C后停止,求点M在整个运动过程中用时最少是多少?
(1)求该抛物线的函数表达式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标;
(3)将点A绕原点旋转得点A′,连接CA′、BA′,在旋转过程中,一动点M从点B出发,沿线段BA′以每秒3个单位的速度运动到A′,再沿线段A′C以每秒1个单位长度的速度运动到C后停止,求点M在整个运动过程中用时最少是多少?

试卷分析
-
【1】题量占比
单选题:(8道)
选择题:(2道)
填空题:(5道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:10
7星难题:0
8星难题:1
9星难题:5