1.单选题- (共9题)
1.
第十三届全运会在天津拉开帷幕,全民以“我要上全运”为主题,举办大型健身赛事活动,参与市民约4 000 000人,将4 000 000用科学记数法表示为( )
A.4×106 | B.40×105 | C.400×104 | D.4×105 |
7.
反比例函数y=
图象上三个点的坐标为(x1,y1)、(x2,y2)、(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是( )

A.y1<y2<y3 | B.y2<y1<y3 | C.y2<y3<y1 | D.y1<y3<y2 |
2.填空题- (共3题)
3.解答题- (共5题)
14.
某校运动会需购买A、B两种奖品共100件,其中A种奖品的单价为10元,B种奖品的单价为15元,且购买的A种奖品的数量不大于B种奖品的3倍
设购买A种奖品x件.
(1)根据题意,填写下表:
(2)设购买奖品所需的总费用为y元,试求出总费用y与购买A种奖品的数量x的函数解析式;
(3)试求A、B两种奖品各购买多少件时所需的总费用最少?此时的最少费用为多少元?
设购买A种奖品x件.
(1)根据题意,填写下表:
购买A种奖品的数量/件 | 30 | 70 | x |
购买A种奖品的费用/元 | 300 | | |
购买B种奖品的费用/元 | | 450 | |
(2)设购买奖品所需的总费用为y元,试求出总费用y与购买A种奖品的数量x的函数解析式;
(3)试求A、B两种奖品各购买多少件时所需的总费用最少?此时的最少费用为多少元?
15.
如图,已知抛物线y=﹣x2+bx+c(b,c是常数)经过A(0,2)、B(4,0)两点.
(1)求该抛物线的解析式和顶点坐标;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这条抛物线于N,求当t取何值时,MN有最大值?最大值是多少?
(3)在(1)的情况下,以A、M、N、D为顶点作平行四边形,请直接写出第四个顶点D的所有坐标(直接写出结果,不必写解答过程)
(1)求该抛物线的解析式和顶点坐标;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这条抛物线于N,求当t取何值时,MN有最大值?最大值是多少?
(3)在(1)的情况下,以A、M、N、D为顶点作平行四边形,请直接写出第四个顶点D的所有坐标(直接写出结果,不必写解答过程)

16.
在5×5的正方形网格中有一条线段AB,点A与点B均在格点上
(1)AB的长等于 ;
(2)请在如图所示的网格中,用无刻度的直尺,且不能用直尺中的直角,画出线段AB的垂直平分线,并简要说明画图的方法(不要求证明)
(1)AB的长等于 ;
(2)请在如图所示的网格中,用无刻度的直尺,且不能用直尺中的直角,画出线段AB的垂直平分线,并简要说明画图的方法(不要求证明)

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:9
7星难题:0
8星难题:2
9星难题:5