2018-2019学年北师大版高中数学选修2-3同步配套(课件+练习):第二章检测

适用年级:高二
试卷号:627833

试卷类型:课时练习
试卷考试时间:2019/2/8

1.单选题(共3题)

1.
一场5局3胜制的乒乓球对抗赛,当甲运动员先胜2局时,比赛因故中断.已知甲、乙水平相当,每局甲、乙胜的概率都为,则这场比赛的奖金分配(甲∶乙)应为(  )
A.6∶1B.7∶1
C.3∶1D.4∶1
2.
马老师从课本上抄录一个随机变量ξ的概率分布列如下表,请小牛同学计算ξ的均值,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案Eξ等于(  )
x
1
2
3
P(ξ=x)
?
!
?
 
A.1B.2
C.4D.6
3.
某校高考数学成绩近似地服从正态分布N(100,102),则该校数学成绩不低于120分的考生占总人数的百分比为(  )
A.46%B.23%
C.2.3%D.4.6%

2.解答题(共3题)

4.
甲、乙二人各有6张扑克牌,每人都是3张红心,2张草花,1张方片.每次两人从自己的6张牌中任意抽取一张进行比较,规定:两人花色相同时甲胜,花色不同时乙胜.
(1)此规定是否公平?为什么?
(2)若又规定:当甲取红心、草花、方片而获胜所得的分数分别为3,2,1,否则得0分,求甲得分的均值.
5.
某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:
奖级
摸出红、蓝球个数
获奖金额
一等奖
3红1蓝
200元
二等奖
3红0蓝
50元
三等奖
2红1蓝
10元
 
其余情况无奖且每次摸奖最多只能获得一个奖级.
(1)求一次摸奖恰好摸到1个红球的概率;
(2)求摸奖者在一次摸奖中获奖金额X的分布列.
6.
   甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛.若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.
(1)求甲在4局以内(含4局)赢得比赛的概率;
(2)记X为比赛决出胜负时的总局数,求X的分布列和数学期望.
试卷分析
  • 【1】题量占比

    单选题:(3道)

    解答题:(3道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:6