1.单选题- (共8题)
3.
下列图形都是由同样大小的●和○按照一定规律组成的,其中第①个图中共有6个●,第②个图中共有13个●,第③个图中共有25个●,第④个图中共有42个●,…,照此规律排列下去,则第⑦个图中●的个数为( )


A.91 | B.112 | C.123 | D.160 |
7.
下列调查中,适合全面调查(普查)方式的是( ).
A.调查全市中小学生玩网游的情况 |
B.调查我校初三某班的中考体育成绩 |
C.调查央视《中国诗词大会》节目的收视率 |
D.调查一批华为手机的使用寿命 |
2.填空题- (共5题)
9.
2018年1月21日阿里巴巴宣布“高层级区域中心”进驻重庆两江数字经济产业园,重点发展数字基础型、数字应用型、数字服务型三大类产业. 三大产业总投资超1830000万元,将1830000这个数字用科学记数法表示为______________.
11.
一辆客车和一辆货车沿着同一条线路以各自的速度匀速从甲地行驶到乙地,货车出发3小时后客车再出发,客车行驶一段时间后追上货车并继续向乙地行驶,客车到达乙地休息1小时后以原速按原路匀速返回甲地,途中与货车相遇.客车和货车之间的距离
(千米)与客车出发的时间
(小时)之间的关系的部分图象如图所示.当客车返回与货车相遇时,客车与甲地相距________千米.




3.解答题- (共6题)
14.
对于一个四位自然数n,如果n满足各个数位上的数字互不相同且均不为0,它的千位数字与个位数字之和等于百位数字与十位数字之和,那么称这个数n为“平衡数”.对于一个“平衡数”,从千位数字开始顺次取出三个数字构成四个三位数,把这四个三位数的和与222的商记为F(n). 例如:n=1526,因为1+6=2+5,所以1526是一个“平衡数”,从千位数字开始顺次取出三个数字构成的四个三位数分别为152、526、261、615,这四个三位数的和为:152+526+261+615=1554,1154
222=7,所以F(1526)=7.
写出最小和最大的“平衡数”n,并求出对应的F(n)的值;
若s,t都是“平衡数”,其中s=10x+y+3201,t=1000m+10n+126(
,
,
,
,x, y, m, n都是整数),规定:
,当F(s)+F(t)是一个完全平方数时,求k的最大值.








16.
从5月份开始,水蜜桃和夏橙两种水果开始上市,根据市场调查,水蜜桃售价为20元/千克,夏橙售价为15元/千克.
(1)某水果商城抓住商机,开始销售这两种水果.若第一周水蜜桃的平均销量比夏橙的平均销量多100千克,要使该水果商城第一周销售这两周水果的总销售额不低于9000元,则第一周至少销售水蜜桃多少千克?
(2)若该水果商城第一周按照(1)中水蜜桃和夏橙的最低销量销售这两种水果,并决定第二周继续销售这两种水果.第二周水蜜桃售价降低了
,销量比第一周增加了
,夏橙的售价保持不变,销量比第一周增加了
.结果两种水果第二周的总销售额比第一周增加了
,求
的值.
(1)某水果商城抓住商机,开始销售这两种水果.若第一周水蜜桃的平均销量比夏橙的平均销量多100千克,要使该水果商城第一周销售这两周水果的总销售额不低于9000元,则第一周至少销售水蜜桃多少千克?
(2)若该水果商城第一周按照(1)中水蜜桃和夏橙的最低销量销售这两种水果,并决定第二周继续销售这两种水果.第二周水蜜桃售价降低了





17.
如图,在平面直角坐标系中,直线
与直线
相交于点A,直线
过点B(-4,0),已知
,AB=
.

(1)求直线
和
的解析式;
(2)将直线
向左平移,使平移后的直线经过坐标原点,且与直线
交于点C,连接AO,求
的面积。






(1)求直线


(2)将直线



18.
如图1,抛物线
与x轴相交于A,B两点(点A在点B的右侧),与y轴交于点C,点D是抛物线的顶点,连接AD、BD.
求△ABD的面积;
如图2,连接AC、BC,若点P是直线AC上方抛物线上一动点,过P作PE//BC交AC于点E,作PQ//y轴交AC于点Q,当△PQE周长最大时,将△PQE沿着直线AC平移,记移动中的△PQE为
,连接
,求△PQE的周长的最大值及
的最小值;
如图3,点G为x轴正半轴上一点,且OG=OC,连接CG,过G作GH⊥AC于点H,将△CGH绕点O顺时针旋转
(
),记旋转中的△CGH为
,在旋转过程中,直线
,
分别与直线AC交于点M,N,
能否成为等腰三角形?若能直接写出所有满足条件的
的值;若不能,请说明理由.




















试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(5道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:11
7星难题:0
8星难题:4
9星难题:3