1.单选题- (共6题)
2.选择题- (共2题)
3.填空题- (共6题)
9.
如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数。
例如,
展开式中的系数1、2、1恰好对应图中第三行的数字;
再如,
展开式中的系数1、3、3、1恰好对应图中第四行的数字。
请认真观察此图,写出(a+b)4的展开式,(a+b)4=_______.
例如,

再如,

请认真观察此图,写出(a+b)4的展开式,(a+b)4=_______.

4.解答题- (共5题)
16.
计算 :(1) (a+3) (a-3)+a(4-a) ;(2)(x+y)(x2+y2)(x-y)(x4+y4) ;
(3)(a-2b+3) (a+2b-3);(4)[(x-y)2+(x+y)2](x2-y2)
(3)(a-2b+3) (a+2b-3);(4)[(x-y)2+(x+y)2](x2-y2)
17.
先阅读材料,再解答下列问题:
我们已经知道,多项式与多项式相乘的法则可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示.例如:(2a+b) (a+b)=2a2+3ab+b2就可以用图①或图②等图形的面积来表示.
(1)请写出图③所表示的代数恒等式:
(2)画出一个几何图形,使它的面积能表示(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.
(3)请仿照上述方法写出另一个含a、b的代数恒等式,并画出与之对应的几何图形.
我们已经知道,多项式与多项式相乘的法则可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示.例如:(2a+b) (a+b)=2a2+3ab+b2就可以用图①或图②等图形的面积来表示.
(1)请写出图③所表示的代数恒等式:
(2)画出一个几何图形,使它的面积能表示(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.
(3)请仿照上述方法写出另一个含a、b的代数恒等式,并画出与之对应的几何图形.

试卷分析
-
【1】题量占比
单选题:(6道)
选择题:(2道)
填空题:(6道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:8
7星难题:0
8星难题:7
9星难题:2