1.单选题- (共7题)
6.
如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2010,最少经过几次操作 ( )


A.6 | B.5 | C.4 | D.3 |
7.
下列计算:(1)an•an=2an;(2)a6+a6=a12;(3)c•c5=c5;(4)26+26=27;(5)(3xy3)3=9x3y9中,正确的个数为( )
A.0个 | B.1个 | C.2个 | D.3个 |
2.填空题- (共9题)
3.解答题- (共8题)
21.
在理解例题的基础上,完成下列两个问题:
例题:若m2+2mn+2n2-6n+9=0.求m和n的值.
解:因为m2+2mn+2n2-6n+9=(m2+2mn+n2)+(n2-6n+9)
=(m+n)2+(n-3)2=0
所以m+n=0,n-3=0即m=-3.n=3
问题(1)若x2+2xy+2y2-4y+4=0,求xy的值.
(2)若a、b、c是△ABC的长,满足a2+b2=10a+8b-41,c是△ABC中最长边的边长,且c为偶数,那么c可能是哪几个数?
例题:若m2+2mn+2n2-6n+9=0.求m和n的值.
解:因为m2+2mn+2n2-6n+9=(m2+2mn+n2)+(n2-6n+9)
=(m+n)2+(n-3)2=0
所以m+n=0,n-3=0即m=-3.n=3
问题(1)若x2+2xy+2y2-4y+4=0,求xy的值.
(2)若a、b、c是△ABC的长,满足a2+b2=10a+8b-41,c是△ABC中最长边的边长,且c为偶数,那么c可能是哪几个数?
23.
(1)已知:如图1,BE⊥DE,∠1=∠B,∠2=∠D,试证明AB与CD平行。
(2)若图形变化为如图2、图3所示,且满足AB∥ CD,BE⊥DE,∠1=∠B,∠2=∠D,那么∠1与∠2有怎样的关系?选择一个图形进行证明。
(2)若图形变化为如图2、图3所示,且满足AB∥ CD,BE⊥DE,∠1=∠B,∠2=∠D,那么∠1与∠2有怎样的关系?选择一个图形进行证明。

试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(9道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:10
7星难题:0
8星难题:6
9星难题:5