1.单选题- (共4题)
2.填空题- (共3题)
7.
在平面直角坐标系中画出两条相交直线y=x和y=kx+b,交点为(x0,y0),在x轴上表示出不与x0重合的x1,先在直线y=kx+b上确定点(x1,y1),再在直线y=x上确定纵坐标为y1的点(x2,y1),然后在x轴上确定对应的数x2,…,依次类推到(xn,yn-1),我们来研究随着n的不断增加,xn的变化情况.如图1(注意:图在下页上),若k=2,b=—4,随着n的不断增加,xn逐渐______(填“靠近”或“远离”)x0;如图2,若k=
,b=2,随着n的不断增加,xn逐渐______(填“靠近”或“远离”)x0;若随着n的不断增加,xn逐渐靠近x0,则k的取值范围为______.


3.解答题- (共4题)
9.
有一种用“☆”定义的新运算:对于任意实数a,b都有a☆b=b2+a.例如7☆4=42+7=23.
(1) 已知m☆2的结果是6,则m的值是多少?
(2) 将两个实数n和n+2用这种新定义“☆”加以运算,结果为4,则n的值是多少?
(1) 已知m☆2的结果是6,则m的值是多少?
(2) 将两个实数n和n+2用这种新定义“☆”加以运算,结果为4,则n的值是多少?
10.
在已知线段AB的同侧构造∠FAB=∠GBA,并且在射线AF,BG上分别取点D和E,在线段AB上取点C,连结DC和EC.

(1)如图,若AD=3,BE=1,△ADC≌△BCE.在∠FAB=∠GBA=60º或∠FAB=∠GBA=90º两种情况中任选一种,解决以下问题:
①线段AB的长度是否发生变化,直接写出长度或变化范围;
②∠DCE的度数是否发生变化,直接写出度数或变化范围.
(2)若AD=a,BE=b,∠FAB=∠GBA=α,且△ADC和△BCE这两个三角形全等,请求出:
①线段AB的长度或取值范围,并说明理由;
②∠DCE的度数或取值范围,并说明理由.

(1)如图,若AD=3,BE=1,△ADC≌△BCE.在∠FAB=∠GBA=60º或∠FAB=∠GBA=90º两种情况中任选一种,解决以下问题:
①线段AB的长度是否发生变化,直接写出长度或变化范围;
②∠DCE的度数是否发生变化,直接写出度数或变化范围.
(2)若AD=a,BE=b,∠FAB=∠GBA=α,且△ADC和△BCE这两个三角形全等,请求出:
①线段AB的长度或取值范围,并说明理由;
②∠DCE的度数或取值范围,并说明理由.
试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(3道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:4
7星难题:0
8星难题:4
9星难题:2