1.单选题- (共12题)
3.
甲、乙二人沿相同的路线由A到B匀速行进,A ,B两地间的路程为20km.他们行进的路程s(km)与甲出发后的时间t(h)之间的函数图像如图所示.根据图像信息,下列说法正确的是( )


A.甲的速度是4km/ h ![]() | B.乙的速度是10 km/ h ![]() | C.乙比甲晚出发1 h ![]() | D.甲比乙晚到B地3 h |
2.选择题- (共4题)
3.填空题- (共10题)
18.
在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,
)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=
;③AC=2
;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是________ (填写序号).




21.
等腰△ABC的周长为10厘米,底边BC长为y厘米,腰AB长为x厘米,则y与x的关系式为:________.当x=2厘米时,y=________厘米;当y=4厘米时,x=________厘米.
22.
定义:数x、y、z中较大的数称为max{x,y,z}.例如max{﹣3,1,﹣2}=1,函数y=max{﹣t+4,t,
}表示对于给定的t的值,代数式﹣t+4,t,
中值最大的数,如当t=1时y=3,当t=0.5时,y=6.则当t=_________时函数y的值最小.


23.
夏天高山上的气温从山脚起每升高l00m降低0.7℃,已知山脚下的气温是23℃,则气温y(℃)与上升的高度x(m)之间的关系式为____;当x=500时,y=__;当y=16时,x=__.
4.解答题- (共4题)
27.
已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?
(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由.
(4)粗略说一说易拉罐底面半径对所需铝质量的影响.

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?
(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由.
(4)粗略说一说易拉罐底面半径对所需铝质量的影响.
28.
如图,一次函数的图象与反比例函数的图象交于A(﹣3,1)、B(m,3)两点,

(1)求反比例函数和一次函数的解析式;
(2)写出使一次函数的值大于反比例函数的x的取值范围;
(3)连接AO、BO,求△ABO的面积.

(1)求反比例函数和一次函数的解析式;
(2)写出使一次函数的值大于反比例函数的x的取值范围;
(3)连接AO、BO,求△ABO的面积.
29.
如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=
(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,12),点C的坐标为(-4,0),且tan∠ACO=2.

(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标;
(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)


(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标;
(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)
试卷分析
-
【1】题量占比
单选题:(12道)
选择题:(4道)
填空题:(10道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:8
7星难题:0
8星难题:13
9星难题:4