1.单选题- (共12题)
8.
为加强我市道路交通安全管理,有效净化城市交通环境,预防和减少道路交通事故的发生,交管部门在全市开展电动车专项整治行动值勤交警采取蹲点守候随机抽查的方式,每隔
分钟检查一辆经过的电动车这种抽样方法属于( )

A.简单随机抽样 | B.定点抽样 |
C.分层抽样 | D.系统抽样 |
10.
从装有
个黑球、
个白球的袋中任取
个球,若事件
为“所取的
个球中至多有
个白球”,则与事件
互斥的事件是( )







A.所取的![]() |
B.所取的![]() ![]() ![]() |
C.所取的![]() |
D.所取的![]() ![]() ![]() |
12.
在印度有一个古老的传说:舍罕王打算奖赏国际象棋的发明人——宰相宰相西萨•班•达依尔.国王问他想要什么,他对国王说:“陛下,请您在这张棋盘的第1个小格里,赏给我1粒麦子,在第2个小格里给2粒,第3小格给4粒,以后每一小格都比前一小格加一倍.请您把这样摆满棋盘上所有的64格的麦粒,都赏给您的仆人吧!”国王觉得这要求太容易满足了,就命令给他这些麦粒.当人们把一袋一袋的麦子搬来开始计数时,国王才发现:就是把全印度甚至全世界的麦粒全拿来,也满足不了那位宰相的要求.那么,宰相要求得到的麦粒到底有多少粒?下面是四位同学为了计算上面这个问题而设计的程序框图,其中正确的是( )
A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共4题)
3.解答题- (共6题)
21.
某校为了解高一实验班的数学成绩,采用抽样调查的方式,获取了
位学生在第一学期末的数学成绩数据,样本统计结果如下表:
(1)求
的值和实验班数学平均分的估计值;
(2)如果用分层抽样的方法从数学成绩小于
分的学生中抽取
名学生,再从这
名学生中选
人,求至少有一个学生的数学成绩是在
的概率.

分组 | 频数 | 频率 |
![]() | ![]() | |
![]() | | ![]() |
![]() | | ![]() |
![]() | | ![]() |
![]() | ![]() | |
![]() | | ![]() |
合计 | ![]() | ![]() |
(1)求

(2)如果用分层抽样的方法从数学成绩小于





22.
某地级市共有
中学生,其中有
学生在
年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为
,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助
元、
元、
元.经济学家调查发现,当地人均可支配年收入较上一年每增加
,一般困难的学生中有
会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生有
转为一般困难学生,特别困难的学生中有
转为很困难学生.现统计了该地级市
年到
年共
年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份
取
时代表
年,
取
时代表
年,……依此类推,且
与
(单位:万元)近似满足关系式
.(
年至
年该市中学生人数大致保持不变)

(1)估计该市
年人均可支配年收入为多少万元?
(2)试问该市
年的“专项教育基金”的财政预算大约为多少万元?
附:对于一组具有线性相关关系的数据
,
,…,
,其回归直线方程
的斜率和截距的最小二乘估计分别为
,
.

























![]() | ![]() | ![]() |
![]() | ![]() | ![]() |

(1)估计该市

(2)试问该市

附:对于一组具有线性相关关系的数据






试卷分析
-
【1】题量占比
单选题:(12道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:22