1.单选题- (共9题)
6.
如图,平面直角坐标系中,△ABC≌△DEF,AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在直线y=﹣3上,D、E两点在y轴上,则点F的横坐标为( )


A.2 | B.3 | C.4 | D.5 |
2.选择题- (共1题)
3.填空题- (共2题)
4.解答题- (共4题)
13.
(1)
克糖水中有
克糖(
>
>0),则糖的质量与糖水的质量比为_______;若再添加
克糖,并全部溶解(
>0),则糖的质量与糖水的质量比为__________;生活常识告诉我们,添加的糖完全溶解后,糖水会更甜,因此我们可以猜想出以上两个质量比之间的大小关系是______________;
(2)我们的猜想正确吗?请你证明这个猜想。






(2)我们的猜想正确吗?请你证明这个猜想。
14.
如图,二次函数
的图象经过点(0,1)坐标平面内有矩形ABCD,A(1,4),B(1,2)C(4,2),D(4,4)
(1)用a表示k;
(2)试说明抛物线图象一定经过(4,1);
(3)求抛物线顶点在x轴上方时,a的取值范围;
(4)写出抛物线与矩形ABCD各边交点个数与a的对应取值范围.

(1)用a表示k;
(2)试说明抛物线图象一定经过(4,1);
(3)求抛物线顶点在x轴上方时,a的取值范围;
(4)写出抛物线与矩形ABCD各边交点个数与a的对应取值范围.

15.
某厂有甲、乙、丙三个蓄水池,已知甲蓄水池的蓄水量x是从3万吨至6万吨,乙蓄水池的蓄水量y万吨与甲蓄水池蓄水量x万吨之间的关系是:
,丙蓄水池的蓄水量的3倍恰好是甲蓄水池的蓄水量与乙蓄水池的蓄水量的积.问:
(1)若丙蓄水池的蓄水量最大为22万吨,当甲蓄水池的蓄水量为6吨时, 丙蓄水池能否容纳?为什么?
(2)求丙蓄水池的蓄水量z万吨与甲蓄水池蓄水量x万吨之间的关系?
(3)蓄水池管理员在观察三个蓄水池蓄水量的记录时发现,在整个蓄水过程中, 丙蓄水池的蓄水量多次出现整数万吨的情况,你能说出共出现过多少次?分别是多少吗?

(1)若丙蓄水池的蓄水量最大为22万吨,当甲蓄水池的蓄水量为6吨时, 丙蓄水池能否容纳?为什么?
(2)求丙蓄水池的蓄水量z万吨与甲蓄水池蓄水量x万吨之间的关系?
(3)蓄水池管理员在观察三个蓄水池蓄水量的记录时发现,在整个蓄水过程中, 丙蓄水池的蓄水量多次出现整数万吨的情况,你能说出共出现过多少次?分别是多少吗?
试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(1道)
填空题:(2道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:9
7星难题:0
8星难题:0
9星难题:5