江苏省常州市2018年中考数学试卷

适用年级:初三
试卷号:621069

试卷类型:中考真题
试卷考试时间:2019/1/25

1.单选题(共5题)

1.
的倒数是  
A.-3B.3C.D.
2.
已知a为整数,且<a<,则a等于  
A.1B.2C.3D.4
3.
已知苹果每千克m元,则2千克苹果共多少元?  
A.m-2B.m+2C.D.2m
4.
一个正比例函数的图象经过(2,-1),则它的表达式为  
A.y=-2xB.y=2xC.D.
5.
下列图形中,哪一个是圆锥的侧面展开图?  
A.B.C.D.

2.填空题(共7题)

6.
计算:|-3|-1=__.
7.
地球与月球的平均距离大约384000km,用科学记数法表示这个距离为__km.
8.
下面是按一定规律排列的代数式:a2,3a4,5a6,7a8则第8个代数式是__.
9.
分解因式:3x2-6x+3=__.
10.
化简:=__.
11.
如图,在平行四边形ABCD中,∠A=70°,DC=DB,则∠CDB=__.
12.
已知点P(-2,1),则点P关于x轴对称的点的坐标是__.

3.解答题(共8题)

13.
计算:
14.
解方程组和不等式组:
(1)
(2)
15.
阅读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.
用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)问题:方程x3+x2-2x=0的解是x1=0,x2=x3=   
(2)拓展:用“转化”思想求方程的解;
(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点
A.求AP的长.
16.
如图,已知点A在反比例函数(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=O
A.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.
(1)求点A的坐标;
(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.
17.
如图,二次函数的图象与轴交于点A、B,与y轴交于点C,点A的坐标为(-4,0),P是抛物线上一点(点P与点A、B、C不重合).
(1)b=  ,点B的坐标是  
(2)设直线PB直线AC交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在,求出点P的横坐标;若不存在,请说明理由;
(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.
18.
如图,把△ABC沿BC翻折得△DB
A.
(1)连接AD,则BC与AD的位置关系是  
(2)不在原图中添加字母和线段,只加一个条件使四边形ABCD是平行四边形,写出添加的条件,并说明理由.
19.
(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接C
A.求证:∠AFE=∠CFB.
(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.
①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);
②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?
20.
为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.

根据统计图提供的信息,解答下列问题:
(1)本次抽样调查的样本容量是  
(2)补全条形统计图;
(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.
试卷分析
  • 【1】题量占比

    单选题:(5道)

    填空题:(7道)

    解答题:(8道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:2

    5星难题:0

    6星难题:13

    7星难题:0

    8星难题:1

    9星难题:4