1.单选题- (共11题)
7.
如图,△ABC和△BDE都是等边三角形,点A,B,D在一条直线上。给出4个结论:①AE=CD;②AB⊥FB;③∠AFC=60°;④△BGH是等边三角形。其中正确的是( )


A.①,②,③ | B.①,②,④ |
C.①,③,④ | D.②,③,④ |
8.
如图,AB⊥BC,OB=OC,CD⊥BC,点A,O,D在一条直线上,通过测量CD的长可知小河的宽AB.由此判定△AOB≌△DOC的依据是( )


A.SAS或SSA B.ASA或AAS | B.SAS或ASA | C.SSS或AAS |
10.
如图,在△ABC中,∠ABC和∠ACB的平分线交于点D,过点D作EF∥BC交AB于E,交AC于F,若AB=12,BC=8,AC=10,则△AEF的周长为( )


A.15 | B.18 | C.20 | D.22 |
2.填空题- (共3题)
3.解答题- (共7题)
16.
声音在空气中的传播速度y(m/s)随气温x(℃)的变化而变化.下表给出了一组不同气温下声音传播的速度:
(1)当x的值为35时,求对应的y的值;
(2)求y与x的关系式.
x(℃) | 0 | 5 | 10 | 15 | 20 | 25 |
y(m/s) | 331 | 334 | 337 | 340 | 343 | 346 |
(1)当x的值为35时,求对应的y的值;
(2)求y与x的关系式.
17.
如图,在△ABC中,AB=AC=3,∠B=50°,点D在BC边上(不与点B,C重合),连接AD,作∠ADE=50°,DE交边AC于点
A.![]() (1)当∠BAD=20°时,求∠CDE的度数; (2)当CD等于多少时,△ABD≌△DCE?为什么? (3)在点D运动的过程中,△ADE可能是等腰三角形吗?若可能,直接写出∠DAE的度数;若不可能,说明理由. |
20.
如图

(1)如图1,学校A,B在道路MN的异侧.在MN上建公交站P,使得P到A,B的距离相等。利用尺规作图确定P的位置.
(2)如图2,学校C,D在道路MN的同侧,在MN上建公交站Q,使得Q到C,D的距离的和最短.利用网格确定Q的位置.

(1)如图1,学校A,B在道路MN的异侧.在MN上建公交站P,使得P到A,B的距离相等。利用尺规作图确定P的位置.
(2)如图2,学校C,D在道路MN的同侧,在MN上建公交站Q,使得Q到C,D的距离的和最短.利用网格确定Q的位置.
试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(3道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:4
9星难题:17