1.单选题- (共5题)
1.
中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.根据刘徽的这种表示法,图1表示的数值为:(+1)+(﹣1)=0,则可推算图2表示的数值为( )


A.7 | B.﹣1 | C.1 | D.±1 |
4.
如果将抛物线y=x2+4x+1平移,使它与抛物线y=x2+1重合,那么平移的方式可以是( )
A.向左平移 2个单位,向上平移 4个单位 |
B.向左平移 2个单位,向下平移 4个单位 |
C.向右平移 2个单位,向上平移 4个单位 |
D.向右平移 2个单位,向下平移 4个单位 |
5.
小明用尺规作了如下四幅图形:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,从保留的作图痕迹看出作图正确的是( )


A.①②④ | B.②③ | C.①③④ | D.①②③④ |
2.填空题- (共5题)
7.
如图(1)是两圆柱形联通容器(联通处体积忽略不计),向甲容器匀速注水,甲容器的水面高度h(cm)随时间t(分)之间的函数关系如图(2)所示,根据提供的图象信息,若甲容器的底面半径为1cm,则乙容器的底面半径为_____cm.

3.解答题- (共6题)
12.
现有24个劳力和1
000亩鱼塘可供对虾、大黄鱼、蛏子养殖,所需劳力与每十亩产值如下表所示.另外设对
虾10x亩,大黄鱼10y亩,蛏子10z亩.
(1)用x的式子分别表示y、z;
(2)问如何安排劳力与养殖亩数收益最大?


| 每十亩劳力 | 每十亩预计产值(万元) |
对虾 | 0.3 | 2 |
大黄鱼 | 0.2 | 8 |
蛏子 | 0.1 | 1.6 |
(1)用x的式子分别表示y、z;
(2)问如何安排劳力与养殖亩数收益最大?
13.
如图,在四边形ABCD中,AD∥BC,∠DAB=90
°,点E是边BC上一动点,连接DE,过点E作DE的垂线交直线AB于点F,已知AD=4cm,AB=2cm,BC=5cm,设CE
的长为xcm,BF的长为ycm.
小帅,根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究,下面是小帅的探究过程,请补充完整:
(1)通过取点画图,测量,得到了x与y的几组值,如下表:
(说明:补全表格时相关数据保留一位小数)
(2)建立直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;

(3)结合画出的函数图象,解决问题:当CE=BF时,CE的长度约为 cm.


小帅,根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究,下面是小帅的探究过程,请补充完整:
(1)通过取点画图,测量,得到了x与y的几组值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 |
y/cm | 2.5 | 1.1 | 0 | 0.9 | 1.5![]() | | 2 | 1.9 | | 0.9 | 0 |
(说明:补全表格时相关数据保留一位小数)
(2)建立直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;

(3)结合画出的函数图象,解决问题:当CE=BF时,CE的长度约为 cm.

14.
已知,如图所示,在矩形ABCD中,点E在BC边上,△AEF=90°

(1)如图①,已知点F在CD边上,AD=AE=5,AB=4,求DF的长;
(2)如图②,已知AE=EF,G为AF的中点,试探究线段AB,BE,BG的数量关系;
(3)如图③,点E在矩形ABCD的BC边的延长线上,AE与BG相交于O点,其他条件与(2)保持不变,AD=5,AB=4,CE=1,求△AOG的面积.

(1)如图①,已知点F在CD边上,AD=AE=5,AB=4,求DF的长;
(2)如图②,已知AE=EF,G为AF的中点,试探究线段AB,BE,BG的数量关系;
(3)如图③,点E在矩形ABCD的BC边的延长线上,AE与BG相交于O点,其他条件与(2)保持不变,AD=5,AB=4,CE=1,求△AOG的面积.
试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(5道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:9
7星难题:0
8星难题:5
9星难题:1