1.单选题- (共8题)
2.填空题- (共7题)
3.解答题- (共7题)
17.
设二次函数y=-
(x+1)(x-a)(a为正数)的图象与x轴交于A、B两点(A在B的左侧),与y轴交于C点.直线l过M(0,m)(0<m<2且m≠1)且与x轴平行,并与直线AC、BC分别相交于点D、
(1)求A、C两点的坐标;
(2)求AD的值(用含m的代数式表示);
(3)是否存在实数m,使CD•AQ=PQ•DE?若能,则求出相应的m的值;若不能,请说明理由.

A.二次函数y=-![]() |
(2)求AD的值(用含m的代数式表示);
(3)是否存在实数m,使CD•AQ=PQ•DE?若能,则求出相应的m的值;若不能,请说明理由.
18.
如图,直线y=x+b与双曲线y=
(k为常数,k≠0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.
(1)求直线和双曲线的解析式;
(2)点P在x轴上,且△BCP的面积等于2,求P点的坐标.

(1)求直线和双曲线的解析式;
(2)点P在x轴上,且△BCP的面积等于2,求P点的坐标.

19.
如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接B

A. (1)求证:BD=CD; (2)不在原图添加字母和线段,对△ABC只加一个条件使得四边形AFBD是菱形,写出添加条件并说明理由. |

20.
已知,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2.
(1)写出菱形EFGH的边长的最小值;
(2)请你探究点F到直线CD的距离为定值;
(3)连接FC,设DG=x,△FCG的面积为y;
①求y与x之间的函数关系式并求出y的取值范围;
②当x的长为何值时,点F恰好在正方形ABCD的边上.
(1)写出菱形EFGH的边长的最小值;
(2)请你探究点F到直线CD的距离为定值;
(3)连接FC,设DG=x,△FCG的面积为y;
①求y与x之间的函数关系式并求出y的取值范围;
②当x的长为何值时,点F恰好在正方形ABCD的边上.

21.
(1)阅读理解
我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系.如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系.如图1,经过平面内一点P作坐标轴的平行线PM和PN交 x轴和y轴于M、N,点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标.
如图2,ω=30°,直角三角形的顶点A在坐标原点O,点B、C分别在x轴和y轴上,AB=
,则点B、C在此斜坐标系内的坐标分别为B ,C .
(2)尝试应用
如图3,ω=45°,O为坐标原点,边长为1的正方形OABC一边OA在x轴上,设点G(x,y)在经过A、C两点的直线上,求y与x之间满足的关系式.

(3)深入探究
如图4,ω=60°,O为坐标原点,M(2,2),圆M的半径为
.有一个内角为60°的菱形,菱形的一边在x轴上,另有两边所在直线恰好与圆M相切,求此菱形的边长.
我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系.如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系.如图1,经过平面内一点P作坐标轴的平行线PM和PN交 x轴和y轴于M、N,点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标.
如图2,ω=30°,直角三角形的顶点A在坐标原点O,点B、C分别在x轴和y轴上,AB=

(2)尝试应用
如图3,ω=45°,O为坐标原点,边长为1的正方形OABC一边OA在x轴上,设点G(x,y)在经过A、C两点的直线上,求y与x之间满足的关系式.

(3)深入探究
如图4,ω=60°,O为坐标原点,M(2,2),圆M的半径为

试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(7道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:4
5星难题:0
6星难题:9
7星难题:0
8星难题:4
9星难题:5