1.单选题- (共8题)
2.
近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到22000公里,将22000用科学记数法表示应为( )
A.2.2×104 | B.22×103 | C.2.2×103 | D.0.22×105 |
4.
《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十
.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其
的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为( )
.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其

A.![]() | B.![]() |
C.![]() | D.![]() |
5.
已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,则下面说法正确的是( )
A.1一定不是方程x2+bx+a=0的根 | B.0一定不是方程x2+bx+a=0的根 |
C.﹣1可能是方程x2+bx+a=0的根 | D.1和﹣1都是方程x2+bx+a=0的根 |
6.
如图,在△ABC中,∠C=90°,AB=10cm,cosB=
点M、N分别是边BC和AC上的两个动点,点M以2cm/s的速度沿C→B方向运动,同时点N以1cm/s的速度沿A→C方向运动,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t,四边形ABMN的面积为S,则下列能大致反映S与t函数关系的图象是( )



A.![]() | B.![]() | C.![]() | D.![]() |
7.
如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=
(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为( )

A.
B. 3 C.
D. 5


A.


2.填空题- (共5题)
3.解答题- (共7题)
15.
为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有
两种型号的挖掘机,已知3台
型和5台
型挖掘机同时施工一小时挖土165立方米;4台
型和7台
型挖掘机同时施工一小时挖土225立方米.每台
型挖掘机一小时的施工费用为300元,每台
型挖掘机一小时的施工费用为180元.
(1)分别求每台
型,
型挖掘机一小时挖土多少立方米?
(2)若不同数量的
型和
型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?







(1)分别求每台


(2)若不同数量的


16.
如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为

A. (1)求抛物线及直线AC的函数关系式; (2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标; (3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由. |

17.
(10分)如图,一次函数
与反比例函数
的图象交于A(1,4),B(4,n)两点.

(1)求反比例函数的解析式;
(2)求一次函数的解析式;
(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.



(1)求反比例函数的解析式;
(2)求一次函数的解析式;
(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
18.
如图,已知AB是⊙O的直径,点P是弦BC上一动点(不与端点重合),过点P作PE⊥AB于点E,延长EP交
于点F,交过点C的切线于点


A. (1)求证:△DCP是等腰三角形; (2)若OA=6,∠CBA=30°. ①当OE=EB时,求DC的长; ②当 ![]() |

19.
旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.
已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=
α.
(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,
①求∠DAF的度数;
②求证:△ADE≌△ADF;
(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;
(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为 .
已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=

(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,
①求∠DAF的度数;
②求证:△ADE≌△ADF;
(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;
(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为 .

20.
赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,全校同时默写50首古诗词,每正确默写出一首古诗词得2分,结果有500名进入决赛,从这500名的学生中随机抽取50名学生进行成绩分析,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:(最高分98分):
Ⅰ.第3组的具体分数为:70,70,70,72,72,74,74,74,76,76,78,78,78,78
Ⅱ.50人得分平均数、中位数、众数如表:
请结合图表数据信息完成下列各题:
(1)填空a= ,m= ;
(2)将频数分布直方图补充完整;
(3)若测试成绩不低于80分为优秀,估计进入决赛的本次测试为的优秀的学生有多少?
组别 | 成绩x分 | 频数(人数) |
第1组 | 50≤x<60 | 6 |
第2组 | 60≤x<70 | 8 |
第3组 | 70≤x<80 | 14 |
第4组 | 80≤x<90 | a |
第5组 | 90≤x<100 | 10 |
Ⅰ.第3组的具体分数为:70,70,70,72,72,74,74,74,76,76,78,78,78,78
Ⅱ.50人得分平均数、中位数、众数如表:
| 平均数 | 中位数 | 众数 |
得分(分) | | m | n |
请结合图表数据信息完成下列各题:
(1)填空a= ,m= ;
(2)将频数分布直方图补充完整;
(3)若测试成绩不低于80分为优秀,估计进入决赛的本次测试为的优秀的学生有多少?

试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:7
7星难题:0
8星难题:6
9星难题:5