浙江省嘉兴市2019年中考数学试题

适用年级:初三
试卷号:620174

试卷类型:中考真题
试卷考试时间:2019/6/22

1.单选题(共7题)

1.
-2019的相反数是(   )
A.2019B.-2019 C.D.
2.
2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为(   )
A.38×104B.3.8×104C.3.8×105D.0.38×106
3.
中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为(   )
A.B.C.D.
4.
如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是(   )
A.tan60°B.-1C.0 D.12019
5.
已知四个实数a,b,c,d,若a>b,c>d,则(   )
A.a+c>b+dB.a-c>b-d C.ac>bd D.
6.
如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是(   )
A.(2,-1)B.(1,-2) C. (-2,1) D. (-2,-1)
7.
小飞研究二次函数y=-(x-m)2-m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=-x+1上;②存在一个m的值,使得函数图象的顶点与轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当-1<x<2时,y随x的增大而增大,则m的取值范围为m≥2其中错误结论的序号是(   )
A.①B.②C.③D.④

2.填空题(共5题)

8.
分解因式:x2-5x=___.
9.
数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,-a,-b的大小关系为____(用“<”号连接).
10.
在x2+(________)+4=0的括号中添加一个关于一次项,使方程有两个相等的实数根.
11.
如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC=12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为__cm;连接BD,则△ABD的面积最大值为___cm2
12.
如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为___.

3.解答题(共6题)

13.
小明解答“先化简,再求值:,其中.”的过程如图.

请指出解答过程中错误步骤的序号,并写出正确的解答过程.
14.
如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数的图象上
(1)求反比例函数的表达式.
(2)把△OAB向右平移a个单位长度,对应得到△O′ A′ B′ 当这个函数图象经过△O′ A′ B′ 一边的中点时,求a 的值.
15.
某农作物的生长率P 与温度 t(℃)有如下关系:如图 1,当10≤t≤25 时可近似用函数刻画;当25≤t≤37 时可近似用函数 刻画.
(1)求h的值.
(2)按照经验,该作物提前上市的天数m(天)与生长率P 满足函数关系:
生长率P 
0.2
0.25
0.3
0.35
提前上市的天数m (天)
0
5
10
15
 
①请运用已学的知识,求m 关于P 的函数表达式;
②请用含的代数式表示m ;
(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为 200元,该作物 30 天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加 600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t(℃)之间的关系如图 2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).
16.
某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图 1,斗杆顶点D 与铲斗顶点E 所在直线DE 垂直地面AM于点E,测得∠CDE=70°(示意图 2).工作时如图 3,动臂BC 会绕点B 转动,当点 A,B,C在同一直线时,斗杆顶点D 升至最高点(示意图 4).
(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC 的度数.
(2)问斗杆顶点D 的最高点比初始位置高了多少米(精确到 0.1米)?
(考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,
17.
如图,在矩形 ABCD中,点 E,F 在对角线B
A.请添加一个条件,使得结论“AE=CF”成立,并加以证明.
18.
在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的   情况进行调查.其中A、B 两小区分别有 500 名居民参加了测试,社区从中各随机   抽取50 名居民成绩进行整理得到部分信息:
(信息一)A 小区 50 名居民成绩的频数直方图如下(每一组含前一个边界值,不含后一个边界值):

(信息二)上图中,从左往右第四组的成绩如下

(信息三)A、B 两小区各 50 名居民成绩的平均数、中位数、众数、优秀率(80 分及以上为优秀)、方差等数据如下(部分空缺):

根据以上信息,回答下列问题:
(1)求A 小区 50 名居民成绩的中位数.
(2)请估计A 小区 500 名居民成绩能超过平均数的人数.
(3)请尽量从多个角度,选择合适的统计量分析 A,B 两小区参加测试的居民掌握垃圾分类知识的情况.
试卷分析
  • 【1】题量占比

    单选题:(7道)

    填空题:(5道)

    解答题:(6道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:1

    5星难题:0

    6星难题:7

    7星难题:0

    8星难题:6

    9星难题:4