1.单选题- (共9题)
1.
如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为( )

A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32
C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32

A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32
C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32
2.填空题- (共3题)
12.
如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为______.

3.解答题- (共5题)
13.
某商场销售A,B两款书包,己知A,B两款书包的进货价格分别为每个30元、50元,商场用3600元的资金购进A,B两款书包共100个.
(1)求A,B两款书包分别购进多少个?
(2)市场调查发现,B款书包每天的销售量y(个)与销售单价x(元)有如下关系:y=-x+90(60≤x≤90).设B款书包每天的销售利润为w元,当B款书包的销售单价为多少元时,商场每天B款书包的销售利润最大?最大利润是多少元?
(1)求A,B两款书包分别购进多少个?
(2)市场调查发现,B款书包每天的销售量y(个)与销售单价x(元)有如下关系:y=-x+90(60≤x≤90).设B款书包每天的销售利润为w元,当B款书包的销售单价为多少元时,商场每天B款书包的销售利润最大?最大利润是多少元?
14.
如图,抛物线
与坐标轴交点分别为
,
,
,作直线BC.
求抛物线的解析式;
点P为抛物线上第一象限内一动点,过点P作
轴于点D,设点P的横坐标为
,求
的面积S与t的函数关系式;
条件同
,若
与
相似,求点P的坐标.














15.
如图,在平面直角坐标系中,一次函数
的图象与反比例函数
的图象交于点
和
.
求一次函数和反比例函数的表达式;
请直接写出
时,x的取值范围;
过点B作
轴,
于点D,点C是直线BE上一点,若
,求点C的坐标.












试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:10
7星难题:0
8星难题:1
9星难题:5