重庆市九龙坡区育才中学2018届九年级中考数学模拟试卷(5月份)

适用年级:初三
试卷号:619317

试卷类型:中考模拟
试卷考试时间:2018/9/12

1.单选题(共6题)

1.
若a>b,则下列各式正确的为(  )
A.|a|>|b|B.|a|<|b|C.|a|>bD.a>|b|
2.
对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82  []=9 []=3 []=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1(  )
A.1B.2C.3D.4
3.
当x=1时,代数式px3+qx+1的值为2018,则当x=﹣1时,代数式px3+qx+1的值为( )
A.2017B.﹣2016C.2018D.﹣2018
4.
已知关于x的不等式组有且只有四个整数解,又关于x的分式方程﹣2=有正数解,则满足条件的整数k的和为(  )
A.5B.6C.7D.8
5.
函数y=中,自变量x的取值范围是(  )
A.x≥1B.x>1C.x≥1且x≠2D.x≠2
6.
下列调查中,适合抽样调查的有(  )个.
(1)了解本班同学每周上网情况;
(2)了解一批白雪修正液的使用寿命;
(3)了解所有15岁孩子的身高情况;
(4)了解2006年我国国民生产总值的情况.
A.1B.2C.3D.4

2.选择题(共2题)

7.如图所示,是探究电流产生热量与哪些因素有关的实验装置.烧瓶内装有质量和初温完全相同的煤油,瓶中电阻丝的电阻R1>R2.在甲图中,保持滑动变阻器的滑片不动,闭合开关一段时间后,B瓶中温度计的示数{#blank#}1{#/blank#},探究的是电流产生热量与{#blank#}2{#/blank#}的关系.利用乙图中的装置,可以探究电流产生热量与{#blank#}3{#/blank#}的关系.

8.如图所示,是探究电流产生热量与哪些因素有关的实验装置.烧瓶内装有质量和初温完全相同的煤油,瓶中电阻丝的电阻R1>R2.在甲图中,保持滑动变阻器的滑片不动,闭合开关一段时间后,B瓶中温度计的示数{#blank#}1{#/blank#},探究的是电流产生热量与{#blank#}2{#/blank#}的关系.利用乙图中的装置,可以探究电流产生热量与{#blank#}3{#/blank#}的关系.

3.填空题(共5题)

9.
请你算一算:如果每人每天节约1粒大米,全国13亿人口一天就能节约_____千克大米!(结果用科学记数法表示,已知1克大米约52粒)
10.
计算:(﹣2+(﹣2017)0=_____.
11.
一辆货车从A地匀速驶往相距350km的B地,当货车行驶1小时经过途中的C地时,一辆快递车恰好从C地出发以另一速度匀速驶往B地,当快递车到达B地后立即掉头以原来的速度匀速驶往A地.(货车到达B地,快递车到达A地后分别停止运动)行驶过程中两车与B地间的距离y(单位:km)与货车从出发所用的时间x(单位:h)间的函数关系如图所示.则货车到达B地后,快递车再行驶_____h到达A地.
12.
如图,正方形ABCD的边长是2,点E是CD边的中点,点F是边BC上不与点B,C重合的一个动点,把∠C沿直线EF折叠,使点C落在点C′处.当△ADC′为等腰三角形时,FC的长为_____.
13.
如图,⊙O是△ABC的外接圆,已知∠ABO=40°,则∠ACB的大小为_____.

4.解答题(共7题)

14.
我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)= .例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=
(1)若F(a)=且a为100以内的正整数,则a=________;
(2)如果m是一个两位数,那么试问F(m)是否存在最大值或最小值?若存在,求出最大(或最小)值以及此时m的取值并简要说明理由.
15.
化简:(1)(2x+1)(2x-1)-(x+1)(3x-2);(2)(-x+1)÷
16.
为了准备科技节创意销售,宏帆初2018级某同学到批发市场购买了一些甲、乙两种型号的小元件,甲型小元件的单价是6元,乙型小元件的单价是3元,该同学的创意作品每件需要的乙型小元件的个数是甲型小元件的个数的2倍,同时,为了控制成本,该同学购买小元件的总费用不超过480元.
(1)该同学最多可购买多少个甲型小元件?
(2)在该同学购买甲型小元件最多的前提下,用所购买的甲、乙两种型号的小元件全部制作成创意作品,在制作中其他费用共花520元,销售当天,该同学在成本价(购买小元件的费用+其他费用)的基础上每件提高2a%(10<a<50)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品全部卖完,这样,该同学在本次活动中赚了a%,求a的值.
17.
如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函双y=(m≠0)的阳象交于点c(n,3),与x轴、y轴分别交于点A、B,过点C作CM⊥x轴,垂足为M,若tan∠CAM=,OA=2.
(1)求反比例函数和一次函数的解析式;
(2)点D是反比例函数图象在第三象限部分上的一点,且到x轴的距离是3,连接AD、BD,求△ABD的面积.
18.
(题文)已知直线AB∥CD.
(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是
(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.
(3)如图3,点E在直线BD的右侧,BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系
19.
已知,如图:正方形ABCD,将Rt△EFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,Rt△EFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:
    
(1)求证:EP2+GQ2=PQ2
(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;
(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).
20.
某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

(1)这次被调查的学生共有    人;
(2)请你将条形统计图(2)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
试卷分析
  • 【1】题量占比

    单选题:(6道)

    选择题:(2道)

    填空题:(5道)

    解答题:(7道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:3

    5星难题:0

    6星难题:9

    7星难题:0

    8星难题:3

    9星难题:3