1.选择题- (共1题)
2.单选题- (共1题)
2.
从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有()
A.210种 | B.420种 | C.630种 | D.840种 |
3.填空题- (共1题)
4.解答题- (共2题)
5.
甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下:
甲校:
乙校:
(Ⅰ)计算x,y的值。
(Ⅱ)若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率;
(Ⅲ)由以上统计数据填写右面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异。
分组 | [70,80) | [80,90) | [90,100) | [100,110) |
频数 | 2 | 3 | 10 | 15 |
分组 | [110,120) | [120,130) | [130,140) | [140,150] |
频数 | 15 | x | 3 | 1 |
甲校:
分组 | [70,80) | [80,90) | [90,100) | [100,110) |
频数 | 1 | 2 | 9 | 8 |
分组 | [110,120) | [120,130) | [130,140) | [140,150] |
频数 | 10 | 10 | y | 3 |
乙校:
(Ⅰ)计算x,y的值。
(Ⅱ)若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率;
| 甲校 | 乙校 | 总计 |
优秀 | | | |
非优秀 | | | |
总计 | | | |
(Ⅲ)由以上统计数据填写右面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异。
P(k2>k0) | 0.10 | 0.025 | 0.010 |
K | 2.706 | 5.024 | 6.635 |
试卷分析
-
【1】题量占比
选择题:(1道)
单选题:(1道)
填空题:(1道)
解答题:(2道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:4