1.单选题- (共12题)
2.填空题- (共6题)
3.解答题- (共9题)
23.
根据不等式的性质,可以得到:若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.这是利用“作差法”比较两个数或两个代数式值的大小.已知A=5m2-4(
m-
),B=7(m2-m)+3,请你运用前面介绍的方法比较代数式A与B的大小.


24.
将一张正方形纸片剪成四个大小、形状一样的小正方形(如图所示),记为第一次操作,然后将其中的一片又按同样的方法剪成四小片,记为第二次操作,如此循环进行下去.请将下表中空缺的数据填写完整,并解答所提出的问题:

(1)如果剪100次,共能得到( )个正方形.
(2)如果剪n次共能得到
个正方形,试用含有n、
的等式表示它们之间的数量关系.
(3)若原正方形的边长为1,设
表示第n次所剪的正方形的边长,
①试用含n的式子表示
.
②试猜想
与原正方形边长的数量关系,并用等式写出这个关系:
(4)运用第(3)题的结论,求
的值.
操作次数 | 1 | 2 | 3 | 4 | … |
正方形个数 | 4 | 7 | | | … |

(1)如果剪100次,共能得到( )个正方形.
(2)如果剪n次共能得到


(3)若原正方形的边长为1,设

①试用含n的式子表示

②试猜想

(4)运用第(3)题的结论,求

25.
有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:
(1)20 筐白菜中,最重的一筐比最轻的一筐重多少千克?
(2)与标准质量比较,20筐白菜总计超过或不足多少千克?
(3)若白菜每千克售价2.6元,则出售这20 筐白菜可卖多少元?(结果保留整数)
与标准质量的差值(单位:千克) | -3 | -2 | -1.5 | 0 | 1 | 2.5 |
筐数 | 1 | 4 | 2 | 3 | 2 | 8 |
(1)20 筐白菜中,最重的一筐比最轻的一筐重多少千克?
(2)与标准质量比较,20筐白菜总计超过或不足多少千克?
(3)若白菜每千克售价2.6元,则出售这20 筐白菜可卖多少元?(结果保留整数)
26.
如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a,c满足
+(c-8)2=0.

(1) a = ,b = ,c = .
(2) 若将数轴折叠,使得A点与B点重合,则点C与数 表示的点重合.
(3) 点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒4个单位长度和8个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB = ,AC = ,BC = .(用含t的代数式表示)
(4) 请问:3AB-(2BC+AC)的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.


(1) a = ,b = ,c = .
(2) 若将数轴折叠,使得A点与B点重合,则点C与数 表示的点重合.
(3) 点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒4个单位长度和8个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB = ,AC = ,BC = .(用含t的代数式表示)
(4) 请问:3AB-(2BC+AC)的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.
试卷分析
-
【1】题量占比
单选题:(12道)
填空题:(6道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:15
7星难题:0
8星难题:7
9星难题:4