1.单选题- (共5题)
4.
八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是( )
A.![]() | B.![]() |
C.![]() | D.![]() |
5.
如图,一次函数y1=k1x+2与反比例函数y
=
的图象交点A(m,4)和B(﹣8,﹣2)两点,若y1>y2,则x的取值范围是( )




A.﹣8<x<4 | B.x<﹣8或0<x<4 ![]() | C.x<﹣8或x>4 | D.x>4或﹣8<x<0 |
2.填空题- (共4题)
3.解答题- (共5题)
11.
学校计划选购甲、乙两种图书作为校园图书节的奖品,已知甲种图书的单价是乙种图书单价的1.5倍,用600元单独购买甲种图书比单独购买乙种图书要少10本.
(1)甲、乙两种图书的单价分别为多少元?
(2)若学校计划购买这两种图书共40本,要使购买的甲种图书数量不少于乙种图书的数量的一半,如何购买使得所需费用最少?最少费用是多少?
(1)甲、乙两种图书的单价分别为多少元?
(2)若学校计划购买这两种图书共40本,要使购买的甲种图书数量不少于乙种图书的数量的一半,如何购买使得所需费用最少?最少费用是多少?
12.
一座钢索桥的轮廓是抛物线型,如图所示,拱高6m,跨度20m,相邻两支柱间的距离约5m.
(1)以地面BC所在的直线为x轴,以BC的垂直平分线OA所在的直线为y轴,建立如图所示的平面直角坐标系,求抛物线的解析式;
(2)求柱EF的长度;
(3)拱桥下地平面是单向行车道,能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明理由;
(4)拱桥下方要悬挂宽为1米的电子警示牌,要求警示牌下底距地面不能少于4.4m,则电子警示牌最长为多长?
(1)以地面BC所在的直线为x轴,以BC的垂直平分线OA所在的直线为y轴,建立如图所示的平面直角坐标系,求抛物线的解析式;
(2)求柱EF的长度;
(3)拱桥下地平面是单向行车道,能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明理由;
(4)拱桥下方要悬挂宽为1米的电子警示牌,要求警示牌下底距地面不能少于4.4m,则电子警示牌最长为多长?

13.
•探究:
(1)图1中,已知线段AB,A(﹣2,0),B(0,3),则线段AO的长为2,BO的长为3,所以线段AB的长为;把Rt△AOB向右平移3个单位,再向上平移2个单位,得到Rt△CDE.
则Rt△CDE的顶点坐标分别为C(1,2),D(3,2),E(3,5);此时线段CD的长为 ,DE的长为 ,所以线段CE的长为 .
(2)在图2中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB的长AB= (用含a,b,c,d的代数式表示,写出推导过程);
•归纳:无论线段AB处于直角坐标系中的哪
个位置,当其端点坐标为A(a,b),B(c,d)时,线段AB的长为AB= .(不必证明)
(3)运用 在图3中,一次函数y=﹣x+3与反比例函数y=
的图象交点为A,B.
①求出交点A、B的坐标;
②线段AB的长;
③点P是x轴上动点,求PA+PB的最小值.
(1)图1中,已知线段AB,A(﹣2,0),B(0,3),则线段AO的长为2,BO的长为3,所以线段AB的长为;把Rt△AOB向右平移3个单位,再向上平移2个单位,得到Rt△CDE.
则Rt△CDE的顶点坐标分别为C(1,2),D(3,2),E(3,5);此时线段CD的长为 ,DE的长为 ,所以线段CE的长为 .
(2)在图2中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB的长AB= (用含a,b,c,d的代数式表示,写出推导过程);
•归纳:无论线段AB处于直角坐标系中的哪

(3)运用 在图3中,一次函数y=﹣x+3与反比例函数y=

①求出交点A、B的坐标;
②线段AB的长;
③点P是x轴上动点,求PA+PB的最小值.

试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:11
7星难题:0
8星难题:0
9星难题:2