1.单选题- (共4题)
4.
已知A(﹣1,y1)、B(2,y2)、C(﹣3,y3)在函数y=﹣5(x+1)2+3的图象上,则y1、y2、y3的大小关系是( )
A.y1<y2<y3 | B.y1<y3<y2 | C.y2<y3<y1 | D.y3<y2<y1 |
2.选择题- (共1题)
3.填空题- (共4题)
7.
某商店经销的某种商品,每件成本为30元,经市场调研,售价为40元,可销售150件,售价每上涨1元,销售量将减少10件,如果这种商品全部销售完,那么该商店可盈利1560元,设这种商品的售价上涨x元,根据题意,可列方程为_____.
4.解答题- (共6题)
11.
在2018年俄罗斯世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.
(1)求出y与x的函数关系式.
(2)当销售单价为多少元时,月销售额为14000元?
(1)求出y与x的函数关系式.
(2)当销售单价为多少元时,月销售额为14000元?
13.
如图,抛物线y=ax2+c与直线y=3相交于点A,B,与y轴相交于点C(0,﹣1),其中点A的横坐标为﹣4.
(1)计算a,c的值;
(2)求出抛物线y=ax2+c与x轴的交点坐标;
(3)利用图象,当0≤ax2+c≤3时,直接写出自变量x的取值范围.
(1)计算a,c的值;
(2)求出抛物线y=ax2+c与x轴的交点坐标;
(3)利用图象,当0≤ax2+c≤3时,直接写出自变量x的取值范围.

14.
如图①,直线y=kx+2与坐标轴交于A、B两点,OA=4,点C是x轴正半轴上的点,且OC=OB,过点C作AB的垂线,交y轴于点D,抛物线y=ax2+bx+c过A、B、C三点.
(1)求抛物线函数关系式;
(2)如图②,点P是射线BA上一动点(不与点B重合),连接OP,过点O作OP的垂线交直线CD于点Q.求证:OP=OQ;
(3)如图③,在(2)的条件下,分别过P、Q两点作x轴的垂线,分别交x轴于点E、F,交抛物线于点M、N,是否存在点P的位置,使以P、Q、M、N为顶点的四边形为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.
(1)求抛物线函数关系式;
(2)如图②,点P是射线BA上一动点(不与点B重合),连接OP,过点O作OP的垂线交直线CD于点Q.求证:OP=OQ;
(3)如图③,在(2)的条件下,分别过P、Q两点作x轴的垂线,分别交x轴于点E、F,交抛物线于点M、N,是否存在点P的位置,使以P、Q、M、N为顶点的四边形为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.

试卷分析
-
【1】题量占比
单选题:(4道)
选择题:(1道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:10
7星难题:0
8星难题:3
9星难题:1