1.单选题- (共5题)
2.选择题- (共1题)
3.填空题- (共8题)
14.
甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是 (填序号).


4.解答题- (共10题)
16.
如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.
(1)a等于多少km,AB两地的距离为多少km;
(2)求线段PM、MN所表示的y与x之间的函数表达式;
(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?
(1)a等于多少km,AB两地的距离为多少km;
(2)求线段PM、MN所表示的y与x之间的函数表达式;
(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?

17.
已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.
(1)求图象l1对应的函数表达式,并画出图象l1;
(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.
(1)求图象l1对应的函数表达式,并画出图象l1;
(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.

18.
某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.
(1)求出y与x的函数表达式;
(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?
(1)求出y与x的函数表达式;
(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?
20.
如图,Rt△ABC中,∠ACB=90°.
(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);
(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.
(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);
(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.

21.
如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.
(1)求证:DH=EK;
(2)求证:DO=EO.
(1)求证:DH=EK;
(2)求证:DO=EO.

22.
(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.
求证:CA+AD=BC.
小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,
∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.
(2)参照(1)中小明的思考方法,解答下列问题:
如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.
求证:CA+AD=BC.
小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,
∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.
(2)参照(1)中小明的思考方法,解答下列问题:
如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.

试卷分析
-
【1】题量占比
单选题:(5道)
选择题:(1道)
填空题:(8道)
解答题:(10道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:11
7星难题:0
8星难题:5
9星难题:7