1.单选题- (共9题)
3.
体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为( )
进球数 | 0 | 1 | 2 | 3 | 4 | 5 |
人数 | 1 | 5 | x | y | 3 | 2 |
A.![]() | B.![]() | C.![]() | D.![]() |
6.
如图所示,下列推理及括号中所注明的推理依据错误的是( )


A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行) |
B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等) |
C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补) |
D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等) |
2.填空题- (共4题)
3.解答题- (共7题)
17.
如图1所示,小亮家与学校之间有一超市,小亮骑车由家匀速行驶去学校,然后在校学习8小时.最后放学骑车匀速回家(上学与放学均不在超市停留).图2中的折线OABC表示小亮离家的距离y(km)与离家的时间x(h)之间的函数关系.
根据已上信息,解答下列问题:
(1)小亮上学的速度为 km/h,放学回家的速度为 km/h;
(2)求线段BC所表示的y与x之间的函数关系;
(3)如果小亮两次经过超市的时间间隔为8.48小时,那么超市离小亮家多远?
根据已上信息,解答下列问题:
(1)小亮上学的速度为 km/h,放学回家的速度为 km/h;
(2)求线段BC所表示的y与x之间的函数关系;
(3)如果小亮两次经过超市的时间间隔为8.48小时,那么超市离小亮家多远?

18.
已知:如图,在平面直角坐标系中,点O是坐标系原点,在△AOC中,OA=OC,点A坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,将△AOC沿AC折叠得到△ABC,请解答下列问题:
(1)点C的坐标为 ;
(2)求线段OM的长;
(3)求点B的坐标.
(1)点C的坐标为 ;
(2)求线段OM的长;
(3)求点B的坐标.

19.
已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.
(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.
请将下列推理过程补充完整:
证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),
∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)
∵PQ∥MN( ),
∴∠CDQ=∠β( ).
∴∠β= (等量代换).
∵∠C=45°(已知),
∴∠β=∠α+45°(等量代换)
(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.
(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.
请将下列推理过程补充完整:
证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),
∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)
∵PQ∥MN( ),
∴∠CDQ=∠β( ).
∴∠β= (等量代换).
∵∠C=45°(已知),
∴∠β=∠α+45°(等量代换)
(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(4道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:11
7星难题:0
8星难题:4
9星难题:5