1.单选题- (共9题)
2.
某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,可列出的方程是( )
A.(3+x)(4-0.5x)=15 | B.(x+3)(4+0.5x)=15 |
C.(x+4)(3-0.5x)=15 | D.(x+1)(4-0.5x)=15 |
3.
如图.二次函数y=ax2+bx+c(a≠0)的部分图象与x轴交于点A(﹣1,0),与y轴交于点B.且对称轴为x=1.则下面的四个结论:
①当x>﹣1时,y>0;
②一元二次方程ax2+bx+c=0的两根为x1=﹣1,x2=3;
③当y<0时,x<﹣1;
④抛物线上两点(x1,y1),(x2,y2).当x1>x2>2时,y1>y2
其中正确结论的个数是( )

A. 3 B. 2 C. 1 D. 0
①当x>﹣1时,y>0;
②一元二次方程ax2+bx+c=0的两根为x1=﹣1,x2=3;
③当y<0时,x<﹣1;
④抛物线上两点(x1,y1),(x2,y2).当x1>x2>2时,y1>y2
其中正确结论的个数是( )

A. 3 B. 2 C. 1 D. 0
4.
二次函数y=ax2+bx+c(a≠0)的图象如图.对称轴x=﹣1.下列结论:
①4ac﹣b2<0;②4a+c<2b;③3b+2c<0.
其中正确结论的个数是( )

①4ac﹣b2<0;②4a+c<2b;③3b+2c<0.
其中正确结论的个数是( )

A.3个 | B.2个 | C.1个 | D.0个 |
6.
若点(﹣2,y1)、(1,y2)、(3,y3)都在反比例函数
的图象上,则y1,y2,y3的大小关系是( )

A.y1<y3<y2 | B.y2<y1<y3 | C.y1<y2<y3 | D.y2<y3<y1 |
7.
在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)是体积V(单位:m3)的反比例函数,它的图象如图所示,当V=10m3时,气体的密度是( )


A.1kg/m3 | B.2kg/m3 | C.100kg/m3 | D.5kg/m3 |
8.
某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元,若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多少株?设每盆多植X株,则可以列出的方程是( )
A.(x+1)(4-0.5x)=15 | B.(x+3)(4+0.5x)=15 |
C.(x+4)(3-0.5x)=15 | D.(3+x)(4-0.5x)=15 |
9.
某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的须数分布直方图.根据图示计算,仰卧起坐次数在15-20次之间的频率是( )


A.0.1 | B.0.17 | C.0.33 | D.0.4 |
2.选择题- (共1题)
3.填空题- (共5题)
12.
新园小区计划在一块长为20米,宽12米的矩形场地上修建三条互相垂直的长方形甬路(一条橫向、两条纵向,且横向、纵向的宽度比为3:2),其余部分种花草.若要使种花草的面积达到144米2.则横向的甬路宽为_____米.

14.
如图,矩形OABC的顶点A,C的坐标分别是(4,0)和(0,2),反比例函数y=
(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为________.


15.
某中学抽取部分学生对“你最喜欢的球类运动”调查问卷,收集整理数据后列频数频率分布表(部分)如下(其中m,n为已知数):
则mn的值为_____.
项目 | 乒乓球 | 羽毛球 | 篮球 | 足球 |
频数 | 80 | 50 | m | |
频率 | 0.4 | | 0.25 | n |
则mn的值为_____.
4.解答题- (共5题)
17.
今年.某电动车商场为适应电动车进电梯的需求,需要购进100辆某型号的小型电动车供客户作宣传,经调查,该小型电动车2015年单价为2000元,2017年单价为1620元.
(1)求2015年到2017年该小型电动车单价平均每年降低的百分率;
(2)选购期间发现该小型电动车在A,B两个厂家有不同的促销方案,A厂家买十送一,B厂家全场打九折,试问去哪个厂家买更优惠?
(1)求2015年到2017年该小型电动车单价平均每年降低的百分率;
(2)选购期间发现该小型电动车在A,B两个厂家有不同的促销方案,A厂家买十送一,B厂家全场打九折,试问去哪个厂家买更优惠?
18.
某商店新进一种台灯.这种台灯的成本价为每个30元,经调查发现,这种台灯每天的销售量y(单位:个)是销售单价x(单位:元)(30≤x≤60)的一次函数.
(1)求销售量y与销售单价x之间的函数表达式;
(2)设这种台灯每天的销售利润为w元.这种台灯销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
x | 30 | 35 | 40 | 45 | 50 |
y | 30 | 25 | 20 | 15 | 10 |
(1)求销售量y与销售单价x之间的函数表达式;
(2)设这种台灯每天的销售利润为w元.这种台灯销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
19.
驾驶员血液中每毫升的酒精含量大于或等于200微克即为酒驾,某研究所经实验测得:成人饮用某品牌38度白酒后血液中酒精浓度y(微克/毫升)与饮酒时间x(小时)之间函数关系如图所示(当4≤x≤10时,y与x成反比例).
(1)根据图象分别求出血液中酒精浓度上升和下降阶段y与x之间的函数表达式.
(2)问血液中酒精浓度不低于200微克/毫升的持续时间是多少小时?
(1)根据图象分别求出血液中酒精浓度上升和下降阶段y与x之间的函数表达式.
(2)问血液中酒精浓度不低于200微克/毫升的持续时间是多少小时?

试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(1道)
填空题:(5道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:12
7星难题:0
8星难题:3
9星难题:3