1.单选题- (共10题)
4.
如图,从边长为a+2的正方形纸片中剪去一个边长为a﹣2的正方形(a>2),剩余部分沿线剪开,再拼成一个长方形(不重叠无缝隙),则该长方形的面积是( )


A.8a | B.4a | C.2a | D.a2﹣4 |
6.
如图,由3×3组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行、每一列以及每一条对角线上的三个代数式的和均相等.则方格内打上“a”的数是( )


A.6 | B.7 | C.8 | D.9 |
9.
如图,直线AB∥CD,∠FGH=90°,∠GHM= 40°,∠HMN=30°,并且∠EFA的两倍比∠CNP大10°,则∠PND的大小是( )


A.100° | B.120° | C.130° | D.150° |
2.选择题- (共3题)
3.填空题- (共5题)
4.解答题- (共8题)
22.
织里某品牌童装在甲、乙两家门店同时销售A,B两款童装,4月份甲门店销售A款童装60件,B款童装15件,两款童装的销售总额为3600元,乙门店销售A款童装40件,B款童装60件,两款童装的销售总额为4400元.
(1)A款童装和B款童装每件售价各是多少元?
(2)现计划5月将A款童装的销售额增加20%,问B款童装的销售额需增加百分之几,才能使A,B两款童装的销售额之比为4:3?
(1)A款童装和B款童装每件售价各是多少元?
(2)现计划5月将A款童装的销售额增加20%,问B款童装的销售额需增加百分之几,才能使A,B两款童装的销售额之比为4:3?
24.
如图,已知四边形ABCD,AD∥B
(1)如图1,当点P在线段CD上运动时,写出∠α,∠β,∠γ之间的关系并说出理由;
(2)如图2,如果点P在线段CD的延长线上运动,探究∠α,∠β,∠γ之间的关系,并说明理由.
(3)如图3,BI平分∠PBC,AI交BI于点I,交BP于点K,且∠PAI:∠DAI=5:1,∠APB=20°,∠I=30°,求∠PAI的度数.
A.点P在直线CD上运动(点P和点C,D不重合,点P,A,B不在同一条直线上),若记∠DAP,∠APB,∠PBC分别为∠α,∠β,∠γ. |
(2)如图2,如果点P在线段CD的延长线上运动,探究∠α,∠β,∠γ之间的关系,并说明理由.
(3)如图3,BI平分∠PBC,AI交BI于点I,交BP于点K,且∠PAI:∠DAI=5:1,∠APB=20°,∠I=30°,求∠PAI的度数.

26.
“五水共治”吹响了浙江大规模环境保护的号角,小明就自己家所在的小区“家庭用水量”进行了一次调查,小明把一个月家庭用水量分成四类:A类用水量为10吨以下;B类用水量为10﹣20吨;C类用水量为20﹣30吨;D类用水量为30吨以上.图1和图2是他根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:
(1)求小明此次调查了多少个家庭?
(2)已知B类,C类的家庭数之比为5:6,根据两图信息,求出B类和C类分别有多少户家庭?
(3)补全条形统计图,并计算出扇形统计图中“C类”部分所对应的扇形的圆心角的度数;
(4)如果小明所住小区共有1200户,请估算全小区属于A类节水型家庭有多少户?
(1)求小明此次调查了多少个家庭?
(2)已知B类,C类的家庭数之比为5:6,根据两图信息,求出B类和C类分别有多少户家庭?
(3)补全条形统计图,并计算出扇形统计图中“C类”部分所对应的扇形的圆心角的度数;
(4)如果小明所住小区共有1200户,请估算全小区属于A类节水型家庭有多少户?

试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(3道)
填空题:(5道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:13
7星难题:0
8星难题:5
9星难题:5