1.单选题- (共8题)
4.
小苏和小林在如图①所示的跑道上进行
米折返跑.在整个过程中,跑步者距起跑线的距离
(单位:
)与跑步时间
(单位:
)的对应关系如图②所示.下列叙述正确的是( ).







A.两人从起跑线同时出发,同时到达终点 |
B.小苏跑全程的平均速度大于小林跑全程的平均速度 |
C.小苏前![]() ![]() |
D.小林在跑最后![]() |
5.
如图,在梯形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于E,∠BAE=∠EAC,O是AC的中点,AD=DC=2,下面结论:①AC=2AB;②AB=
;③S△ADC=2S△ABE;④BO⊥AE,其中正确的个数是( )



A.1 | B.2 | C.3 | D.4 |
8.
有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( )
A.中位数 | B.平均数 | C.众数 | D.方差 |
2.填空题- (共6题)
12.
如图是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…依此类推,若正方形①的边长为64m,则正方形⑨的边长为________cm.

3.解答题- (共9题)
17.
如图,过点A(0,3)的一次函数y1=kx+b(k≠0)的图象与正比例函数y2=2x的图象相交于点B,且点B的横坐标是1.

(1)求点B的坐标及k、b的值;
(2)若该一次函数的图象与x轴交于D点,求△BOD的面积
(3)当y1≤y2时,自变量x的取值范围为 .

(1)求点B的坐标及k、b的值;
(2)若该一次函数的图象与x轴交于D点,求△BOD的面积
(3)当y1≤y2时,自变量x的取值范围为 .
18.
问题情境:
平面直角坐标系中,矩形纸片OBCD按如图的方式放置
已知
,
,将这张纸片沿过点B的直
线折叠,使点O落在边CD上,记作点A,折痕与边OD交于点E.
数学探究:
点C的坐标为______;
求点E的坐标及直线BE的函数关系式;
若点P是x轴上的一点,直线BE上是否存在点Q,能使以A,B,P,Q为顶点的四边形是平行四边形?
若存在,直接写出相应的点Q的坐标;若不存在,说明理由.
平面直角坐标系中,矩形纸片OBCD按如图的方式放置



线折叠,使点O落在边CD上,记作点A,折痕与边OD交于点E.
数学探究:



若存在,直接写出相应的点Q的坐标;若不存在,说明理由.

19.
某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.
(1)求y与x的关系式;
(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?
(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.
(1)求y与x的关系式;
(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?
(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.
21.
在直角坐标系中,已知两点的坐标是M(x1,y1),N(x2,y2),M,N两点之间的距离,可以用公式MN=
计算.
解答下列问题:
(1)若已知点A(1,2),B(4,-2),求A,B两点间的距离;
(2)在(1)的条件下,点O是坐标原点,判断△AOB是什么三角形,并说明理由.

解答下列问题:
(1)若已知点A(1,2),B(4,-2),求A,B两点间的距离;
(2)在(1)的条件下,点O是坐标原点,判断△AOB是什么三角形,并说明理由.
22.
如图,在平行四边形ABCD中,点F在AD上,且AF=AB,AE平分∠BAD交BC于点E,连接EF,BF,与AE交于点O.

(1)求证:四边形ABEF是菱形;
(2)若四边形ABEF的周长为40,BF=10,求AE的长及四边形ABEF的面积.

(1)求证:四边形ABEF是菱形;
(2)若四边形ABEF的周长为40,BF=10,求AE的长及四边形ABEF的面积.
试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(6道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:17
7星难题:0
8星难题:1
9星难题:4