江苏省东台市2017-2018学年上学期期末考试九年级数学试题

适用年级:初三
试卷号:589234

试卷类型:期末
试卷考试时间:2018/1/12

1.单选题(共3题)

1.
下列方程中,是一元二次方程的是(  )
A.y= x2﹣3B.2(x+1)=3C.x2+3x﹣1=x2+1D.x2=2
2.
有15位同学参加智力竞赛,已知他们的得分互不相同,取8位同学进入决赛,小明同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这15位同学的分数的( )
A.平均数B.众数C.中位数D.最高分数
3.
下列四个命题:①垂直于弦的直径平分弦以及弦所对的两条弧;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④矩形一定有一个外接圆;⑤三角形的外心到三角形三边的距离相等。其中真命题的个数有( )
A.4个B.3个C.2个D.1个

2.填空题(共3题)

4.
已知实数m是关于x的方程x2-3x-1=0的一根,则代数式m2-3m +5值为_______.
5.
为二次函数的图象上的三个点,则请你用“<”连接得_________________.
6.
二次函数图象的顶点坐标是_________.

3.解答题(共5题)

7.
定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.
例如计算:(2+i)+(3﹣4i)=(2+3)+(i﹣4i)=5﹣3i
(1)填空:i3    ,i4    
(2)填空:①(2+i)(2﹣i)=    ;  ②(2+i)2    
(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知,(x+y)+3i=1﹣(x﹣y)i,(x,y为实数),求x,y的值.
(4)试一试:请利用以前学习的有关知识将化简成a+bi的形式.
(5)解方程:x2﹣2x+4=0.
8.
(1)解方程(2)已知a:b:c=3:2:5.求的值.
9.
已知是关于的方程的两个不相等的实数根.
(1)求实数的取值范围;
(2)已知等腰的一边长为7,若恰好是另外两边长,求这个三角形的周长.
10.
如图,抛物线的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,线段OD=OC.
(1)求抛物线的解析式;
(2)抛物线上是否存在点M,使得△CDM是以CD为直角边的直角三角形?若存在,请求出M点的坐标;若不存在,请说明理由;
(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,连接QE.若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点的移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由.
11.
某商场销售一种成本为每件30元的商品,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似看作一次函数y=-10x+600,商场销售该商品每月获得利润为w(元).
(1)求w与x之间的函数关系式;
(2)如果商场销售该商品每月想要获得2000元的利润,那么每月成本至少多少元?
(3)为了保护环境,政府部门要求用更加环保的新产品替代该商品,商场销售新产品,每月的销量与销售价格之间的关系与原产品的销售情况相同,新产品的成本每件32元,若新产品每月的销售量不低于200件时,政府部门给予每件4元的补贴,试求定价多少元时,每月销售新产品的利润最大?求出最大的利润。
试卷分析
  • 【1】题量占比

    单选题:(3道)

    填空题:(3道)

    解答题:(5道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:2

    5星难题:0

    6星难题:4

    7星难题:0

    8星难题:3

    9星难题:2