1.单选题- (共5题)
4.
如图所示,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于点E,EF∥AC.下列结论一定成立的是( )

A. AB=BF B. AE=ED
C. AD=DC D. ∠ABE=∠DFE

A. AB=BF B. AE=ED
C. AD=DC D. ∠ABE=∠DFE
2.选择题- (共5题)
8.通过某段导体的电流为0.2A,导体两端的电压为4V,则这段导体的电阻为{#blank#}1{#/blank#};如果电压为8×10﹣3kV,电流为{#blank#}2{#/blank#},电阻为{#blank#}3{#/blank#};若导体两端的电压为0V,则通过导体的电流为{#blank#}4{#/blank#},导体的电阻为{#blank#}5{#/blank#}.
3.填空题- (共3题)
11.
下面每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)上有n(n≥2)个圆点时,图案的圆点数为Sn,按此规律推算Sn 关于n的关系式为:__________________.

4.解答题- (共5题)
14.
为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化..绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的
.已知种植草皮与种植树木每亩的费用分别为8000元与12000元.
(1)种植草皮的最小面积是多少?
(2)种植草皮的面积为多少时绿化总费用最低?最低费用为多少?

(1)种植草皮的最小面积是多少?
(2)种植草皮的面积为多少时绿化总费用最低?最低费用为多少?
15.
如图,圆B切y轴于原点O,过定点A(-
,0)作圆B的切线交圆于点P,已知tan∠PAB=
,抛物线C经过A、P两点。

(1)求圆B的半径.
(2)若抛物线C经过点B,求其解析式.
(3)设抛物线C交y轴于点M,若三角形APM为直角三角形,求点M的坐标.



(1)求圆B的半径.
(2)若抛物线C经过点B,求其解析式.
(3)设抛物线C交y轴于点M,若三角形APM为直角三角形,求点M的坐标.
16.
国际奥委会2003年6月29日决定,2008年北京奥运会的举办日期由7月25日至8月10日推迟至8月8日至24日,原因与北京地区的气温有关,为了了解这段时间北京的气温分布状况,相关部门对往年7月25日至8月24日的日最高气温进行抽样,得到如下样本数据:
(1)分别写出7月25日至8月10日和8月8日至8月24日两时间段的两组日最高气温样本数据的中位数和众数;
(2)若日最高气温33 oC(含33 oC)以上为高温天气,根据以上数据预测北京2008年7月25日至8月10日和8月8日至24日期间分别出现高温天气的概率是多少?
(3)根据(1)和(2)得到的数据,对北京奥运会的举办日期因气温原因由7月25日至8月10日推迟至8月8日至24日做出解释.

(1)分别写出7月25日至8月10日和8月8日至8月24日两时间段的两组日最高气温样本数据的中位数和众数;
(2)若日最高气温33 oC(含33 oC)以上为高温天气,根据以上数据预测北京2008年7月25日至8月10日和8月8日至24日期间分别出现高温天气的概率是多少?
(3)根据(1)和(2)得到的数据,对北京奥运会的举办日期因气温原因由7月25日至8月10日推迟至8月8日至24日做出解释.
17.
如图,四边形 ABCD 为平行四边形,AD=a,BE∥AC,DE 交AC的延长线于F点,交BE于E点.
(1)求证:DF=FE ;
(2)若 AC=2CF,∠ADC=60°,AC⊥DC,求BE的长;
(3)在(2)的条件下,求四边形ABED的面积.
(1)求证:DF=FE ;
(2)若 AC=2CF,∠ADC=60°,AC⊥DC,求BE的长;
(3)在(2)的条件下,求四边形ABED的面积.

试卷分析
-
【1】题量占比
单选题:(5道)
选择题:(5道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:5
7星难题:0
8星难题:3
9星难题:5