安徽省安庆市23校联考2018-2019学年七年级下学期期中试卷数学试题

适用年级:初一
试卷号:586812

试卷类型:期中
试卷考试时间:2019/5/6

1.单选题(共10题)

1.
的绝对值是(   )
A.B.C.D.
2.
估计立方根大小在(   )
A.之间B.之间C.之间D.之间
3.
这几个数中,无理数有(   )
A.B.C.D.
4.
下列运算正确的是(   )
A.B.C.D.
5.
已知,则的值是(   )
A.B.C.D.以上选项都不对
6.
边长分别为的大小两个正方形如图所示摆放在一起,其中有一部分重叠,则阴影部分与阴影部分的面积差是(   )
A.B.C.D.
7.
有一个数值转换器,原理如下图所示,当输入时,输出的是(   )
A.B.C.D.
8.
,则下列结论不一定成立的是(   )
A.B.C.D.
9.
关于的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是(   )
A.B.C.D.
10.
若关于的不等式组无解,则的取值范围是(   )
A.B.C.D.

2.填空题(共4题)

11.
________.
12.
观察下列算式:的个位数字是________.
13.
不等式组的最小整数解是_____.
14.
已知am=3,an=2,则a2mn的值为_____.

3.解答题(共8题)

15.
运用简便方法计算下式的值
16.
先化简,再求值:,其中
17.
我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉揭示了二项和的展开式的各项系数规律,比欧洲的发现早三百年,为纪念杨辉的功绩,世人称如图中右图叫“杨辉三角”。

(1)观察“杨辉三角”规律,依次写出“杨辉三角”第行中从左到右的各数;
(2)请运用幂的意义和多项式乘法法则,按如下要求展开下列各式,以验证“杨辉三角”第四行的规律:展开后各项按字母降幂、升幂排列
(3)解不等式
19.
在实数范围内定义一种新运算“”,其运算规则为:,如
(1)若,则________;
(2)求不等式的负整数解。
20.
“绿水青山,就是金山银山”。某旅游景区为了保护环境,需购买两种型号的垃圾处理设备共台。已知每台型设备日处理能力为吨;每台型设备日处理能力为吨。根据实际情况,要求型设备不多于型设备的倍,且购回的设备日处理能力不低于吨。请你为该景区设计购买设备的方案。
21.
红星中学计划组织“春季研修活动,活动组织负责人从公交公司了解到如下租车信息:
车型


载客量(人/辆)


租金(元/辆)


 
校方从实际情况出发,决定租用型客车共辆,而且租车费用不超过元。
(1)请为校方设计可能的租车方案;
(2)在(1)的条件下,校方根据自愿的原则,统计发现有人参加,请问校方应如何租车,且又省钱?
22.
解不等式组并将解集在数轴上表示出来。
试卷分析
  • 【1】题量占比

    单选题:(10道)

    填空题:(4道)

    解答题:(8道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:15

    7星难题:0

    8星难题:1

    9星难题:6