1.单选题- (共2题)
2.选择题- (共2题)
3.填空题- (共1题)
4.解答题- (共5题)
8.
乘法公式的探究及应用:
探究问题:
如图1是一张长方形纸条,将其剪成长短两条后刚好能拼成图2,如图所示。
(1)则图1长方形纸条的面积可表示为________________(写成多项式乘法的形式)。

(2)拼成的图2中阴影部分面积可表示为________________(写成两数平方差的形式)。

(3)比较两图的阴影部分面积,可以得到乘法公式____________。
结论运用:
(4)应用所得的公式计算:
=____________________。
=___________________。
拓展运用:
(5)计算:
。
探究问题:
如图1是一张长方形纸条,将其剪成长短两条后刚好能拼成图2,如图所示。
(1)则图1长方形纸条的面积可表示为________________(写成多项式乘法的形式)。

(2)拼成的图2中阴影部分面积可表示为________________(写成两数平方差的形式)。

(3)比较两图的阴影部分面积,可以得到乘法公式____________。
结论运用:
(4)应用所得的公式计算:


拓展运用:
(5)计算:

9.
某校七年级学生到野外活动,为测量一池塘两端A,B的距离,甲、乙、丙三位同学分别设计出如下几种方案:
甲:如图①,先在平地取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的长即为A,B的距离.
乙:如图②,先过点B作AB的垂线,再在垂线上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出DE的长即为A,B的距离.
丙:如图③,过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA,这时只要测出BC的长即为A,B的距离.
(1)以上三位同学所设计的方案,可行的有_______________;
(2)请你选择一可行的方案,说说它可行的理由.


甲:如图①,先在平地取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的长即为A,B的距离.
乙:如图②,先过点B作AB的垂线,再在垂线上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出DE的长即为A,B的距离.
丙:如图③,过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA,这时只要测出BC的长即为A,B的距离.
(1)以上三位同学所设计的方案,可行的有_______________;
(2)请你选择一可行的方案,说说它可行的理由.



试卷分析
-
【1】题量占比
单选题:(2道)
选择题:(2道)
填空题:(1道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:4
7星难题:0
8星难题:0
9星难题:4