1.单选题- (共9题)
2.
在不借助任何工具的情况下,人的眼睛可以看到的最小物体的长度约为0.00003米,将0.00003用科学记数法表示为( )
A.3×10-5 | B.0.3×10-4 | C.30×10-6 | D.3×105 |
3.
甲、乙两车分别从相距200km的A,B两地同时出发,它们离A地的距离s(km)随时间t(h)变化的图象如图所示,则下列结论不正确的是( )


A.甲车的平均速度为40km/h |
B.乙车行驶3h到达A地,稍作停留后返回B地 |
C.经![]() |
D.乙车返回B地的平均速度比去A地的平均速度小 |
4.
西海岸旅游旺季到来,为应对越来越严峻的交通形势,新区对某道路进行拓宽改造.工程队在工作了一段时间后,因雨被迫停工几天,随后工程队加快了施工进度,按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路y(米)与时间x(天)的函数关系的大致图象是( )
A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共6题)
13.
如图反映的过程是:小刚从家去菜地浇水,又去青稞地锄草,然后回家.已知菜地与青稞地的距离为a千米,小刚在青稞地锄草比在菜地浇水多用了b分钟,则a,b的值分别为__________.

14.
如图,直线AB与直线CD交于点O,OE⊥AB,∠DOF=90°,OB平分∠DOG,有下列结论:①当∠AOF=60°时,∠DOE=60°;②OD为∠EOG的平分线;③与∠BOD相等的角有三个;④∠COG=∠AOB-2∠EOF.其中正确的结论是________(填序号).


3.解答题- (共7题)
17.
如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地,中间将修建一座边长为(a+b)米的正方形雕像,规划部门计划将余下部分进行绿化.
(1)试用含a,b的式子表示绿化部分的面积(结果要化简);
(2)若a=3,b=2,请求出绿化部分的面积.
(1)试用含a,b的式子表示绿化部分的面积(结果要化简);
(2)若a=3,b=2,请求出绿化部分的面积.

18.
如图所示,用长为20的铁丝焊接成一个长方形,设长方形的一边为x,面积为y,随着x的变化,y的值也随之变化.
(1)写出y与x之间的关系式,并指出在这个变化中,哪个是自变量?哪个是因变量?

(2)用表格表示当x从1变化到9时(每次增加1),y的相应值;
(3)当x为何值时,y的值最大?
(1)写出y与x之间的关系式,并指出在这个变化中,哪个是自变量?哪个是因变量?

(2)用表格表示当x从1变化到9时(每次增加1),y的相应值;
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | | | | | | | | | |
(3)当x为何值时,y的值最大?
19.
陈杰骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买某本书,于是又折回到刚经过的一家书店,买到书后继续赶去学校.以下是他本次上学的路程与所用时间的关系示意图.根据图中提供的信息回答下列问题:
(1)陈杰家到学校的距离是多少米?书店到学校的距离是多少米?
(2)陈杰在书店停留了多少分钟?本次上学途中,陈杰一共行驶了多少米?
(3)在整个上学的途中哪个时间段陈杰骑车速度最快?最快的速度是多少米?
(4)如果陈杰不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?
(1)陈杰家到学校的距离是多少米?书店到学校的距离是多少米?
(2)陈杰在书店停留了多少分钟?本次上学途中,陈杰一共行驶了多少米?
(3)在整个上学的途中哪个时间段陈杰骑车速度最快?最快的速度是多少米?
(4)如果陈杰不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?

20.
如图,直线AB、CD相交于点O,OE把∠BOD分成两部分.
(1)图中∠AOC的对顶角为_______,∠BOE的补角为________;
(2)若∠AOC=75°,且∠BOE∶∠EOD=1∶4,求∠AOE的度数.
(1)图中∠AOC的对顶角为_______,∠BOE的补角为________;
(2)若∠AOC=75°,且∠BOE∶∠EOD=1∶4,求∠AOE的度数.

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(6道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:17
7星难题:0
8星难题:3
9星难题:2