1.选择题- (共1题)
1.
习作
通过本单元的学习,我们对保护环境有了进一步的认识。这次习作,我们就写一写这方面的内容。请以“我是环保小卫士”为题,可以写捡垃圾袋,为草地浇水,除草,清除小广告,制止噪音污染……要求写一件事,把重点部分写具体。
2.单选题- (共8题)
4.
如图,E,F分别是AB,CD上的点,G是BC的延长线上一点,且∠B=∠DCG=∠D,则下列结论不一定成立的是( )


A.∠AEF=∠EFC | B.∠A=∠BCF | C.∠AEF=∠EBC | D.∠BEF+∠EFC=180° |
8.
如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是


A.75°36′ | B.75°12′ | C.74°36′ | D.74°12′ |
3.填空题- (共10题)
13.
以下三种沿AB折叠的方法:(1)如图①,展开后测得∠1=∠2;(2)如图②,展开后测得∠1=∠2且∠3=∠4;(3)如图③,测得∠1=∠2.其中能判定纸带两条边线a,b互相平行的是________(填序号).

4.解答题- (共5题)
22.
如图,已知AB∥C
A.![]() (1)判断∠FAB与∠C的大小关系,请说明理由; (2)若∠C=35°,AB是∠FAD的平分线. ①求∠FAD的度数; ②若∠ADB=110°,求∠BDE的度数. |
23.
如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GH

A. (1)求证:CE∥GF; (2)试判断∠AED与∠D之间的数量关系,并说明理由; (3)若∠EHF=80°,∠D=30°,求∠AEM的度数. |

24.
阅读理解
如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.
(1)阅读并补充下面推理过程
解:过点A作ED∥BC
∴∠B=∠ ,∠C=∠ .
又∵∠EAB+∠BAC+∠DAC=180°(平角定义)
∴∠B+∠BAC+∠C=180°
从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决
(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.
小明受到启发,过点C作CF∥AB如图所示,请你帮助小明完成解答:
(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°.BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.
①如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为 °.
②如图4,点B在点A的右侧,且AB<CD,AD<B

如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.
(1)阅读并补充下面推理过程
解:过点A作ED∥BC
∴∠B=∠ ,∠C=∠ .
又∵∠EAB+∠BAC+∠DAC=180°(平角定义)
∴∠B+∠BAC+∠C=180°
从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决
(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.
小明受到启发,过点C作CF∥AB如图所示,请你帮助小明完成解答:
(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°.BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.
①如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为 °.
②如图4,点B在点A的右侧,且AB<CD,AD<B
A.若∠ABC=n°,则∠BED的度数为 °(用含n的代数式表示) |

试卷分析
-
【1】题量占比
选择题:(1道)
单选题:(8道)
填空题:(10道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:18
7星难题:0
8星难题:2
9星难题:2