1.单选题- (共10题)
1.
如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )


A.两条直线相交,只有一个交点 | B.两点确定一条直线 |
C.经过一点的直线有无数条 | D.两点之间,线段最短 |
7.
下列说法正确的个数是( )
(1)连接两点之间的线段叫两点间的距离;
(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;
(3)若AB=2CB,则点C是AB的中点;
(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.
A. 1个 B. 2个 C. 3个 D. 4个
(1)连接两点之间的线段叫两点间的距离;
(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;
(3)若AB=2CB,则点C是AB的中点;
(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.
A. 1个 B. 2个 C. 3个 D. 4个
2.填空题- (共8题)
3.解答题- (共8题)
19.
如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.

(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动 个单位;
(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:
①点A、B、C表示的数分别是 、 、 (用含a、t的代数式表示);
②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.

(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动 个单位;
(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:
①点A、B、C表示的数分别是 、 、 (用含a、t的代数式表示);
②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.
20.
两种规格的长方体纸盒,尺寸如下(单位:厘米)
(1)做这种规格的纸盒各一个,共用料多少平方厘米?
(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?
| 长 | 宽 | 高 |
小纸盒 | a | b | 20 |
大纸盒 | 1.5a | 2b | 30 |
(1)做这种规格的纸盒各一个,共用料多少平方厘米?
(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?
23.
(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;
(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;
(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?
请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.
(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;
(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?
请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.

24.
以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.
(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE= ;
(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;
(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=
∠AOE.求∠BOD的度数.
(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE= ;
(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;
(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=


25.
如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度数.
解:∵∠AOB=90°
∴∠1与∠2互余
∵∠COD=90°
∴∠BOC与∠2互余
∴∠1=∠ ( )
∵∠1=30°
∴∠BOC=30°
∵OE平分∠BOC(已知)
∴∠COE=
∠BOC
∴∠COE=15°
解:∵∠AOB=90°
∴∠1与∠2互余
∵∠COD=90°
∴∠BOC与∠2互余
∴∠1=∠ ( )
∵∠1=30°
∴∠BOC=30°
∵OE平分∠BOC(已知)
∴∠COE=

∴∠COE=15°

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(8道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:14
7星难题:0
8星难题:6
9星难题:5