1.单选题- (共3题)
2.
将抛物线y=x2+4x+5先向右平移1个单位,再关于y轴作轴对称变换,则此时抛物线的解析式为( )
A.y=x2﹣2x+2 | B.y=x2+2x+2 | C.y=x2+2x+4 | D.y=x2﹣2x+4 |
2.填空题- (共6题)
7.
如图,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为弧AN上一点.且弧AC=弧AM,连接CM,交AB于点E,交AN于点F,现给出以下结论:
①AD=BD;②∠MAN=90°;③弧AM =弧BM ;④∠ACM+∠ANM=∠MOB;⑤AE=
MF.其中正确结论的序号是_____.
①AD=BD;②∠MAN=90°;③弧AM =弧BM ;④∠ACM+∠ANM=∠MOB;⑤AE=


9.
某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95、90、88,则小彤这学期的体育成绩为______分.
3.解答题- (共8题)
12.
已知,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.
(1)直接写出C点的坐标;
(2)求抛物线的解析式;
(3)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.
(1)直接写出C点的坐标;
(2)求抛物线的解析式;
(3)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.

13.
某店只销售某种进价为40元/kg的产品,已知该店按60元kg出售时,每天可售出100kg,后来经过市场调查发现,单价每降低1元,则每天的销售量可增加10kg.
(1)若单价降低2元,则每天的销售量是_____千克,每天的利润为_____元;若单价降低x元,则每天的销售量是_____千克,每天的利润为______元;(用含x的代数式表示)
(2)若该店销售这种产品计划每天获利2240元,单价应降价多少元?
(3)当单价降低多少元时,该店每天的利润最大,最大利润是多少元?
(1)若单价降低2元,则每天的销售量是_____千克,每天的利润为_____元;若单价降低x元,则每天的销售量是_____千克,每天的利润为______元;(用含x的代数式表示)
(2)若该店销售这种产品计划每天获利2240元,单价应降价多少元?
(3)当单价降低多少元时,该店每天的利润最大,最大利润是多少元?
14.
请阅读下列材料,并完成相应的任务:
阿基米德是有史以来最伟大的数学家之一,阿基米德的折弦定理是其推导出来的重要定理之一.阿基米德折弦定理:如图,AB和BC是⊙O的两条弦(即折线ABC是⊙O的一条折弦),BC>AB,M是弧ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.
证明:如图,在CB上截取CG=AB,连接MA,MB,MC和MG.
∵M是弧ABC的中点,
∴MA=MC.
…
请按照上面的证明思路,写出该证明的剩余部分.
阿基米德是有史以来最伟大的数学家之一,阿基米德的折弦定理是其推导出来的重要定理之一.阿基米德折弦定理:如图,AB和BC是⊙O的两条弦(即折线ABC是⊙O的一条折弦),BC>AB,M是弧ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.
证明:如图,在CB上截取CG=AB,连接MA,MB,MC和MG.
∵M是弧ABC的中点,
∴MA=MC.
…
请按照上面的证明思路,写出该证明的剩余部分.

15.
已知,∠ACB=90°,CD是∠ACB的平分线,点P在CD上,CP=
.将三角
板的直角顶点放置在点P处,绕着点P旋转,三角板的一条直角边与射线CB交于点E,另一条直角边与直线CA、直线CB分别交于点F、点G.
(1)如图,当点F在射线CA上时,
①求证:PF=PE.
②设CF=x,EG=y,求y与x的函数解析式并写出函数的定义域.
(2)连接EF,当△CEF与△EGP相似时,求EG的长.


(1)如图,当点F在射线CA上时,
①求证:PF=PE.
②设CF=x,EG=y,求y与x的函数解析式并写出函数的定义域.
(2)连接EF,当△CEF与△EGP相似时,求EG的长.

16.
如图,在△ABC 中,∠ABC=90°,∠C=30°,AC 的垂直平分线交 BC 于点 D,交AC 于点 E.
(1)判断 BE 与△DCE 的外接圆⊙O 的位置关系,并说明理由;
(2)若 BE=
,BD=1,求△DCE 的外接圆⊙O 的直径.
(1)判断 BE 与△DCE 的外接圆⊙O 的位置关系,并说明理由;
(2)若 BE=


试卷分析
-
【1】题量占比
单选题:(3道)
填空题:(6道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:8
7星难题:0
8星难题:1
9星难题:5