1.单选题- (共10题)
8.
下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有( )
A. ①② B. ①③ C. ②④ D. ③④
A. ①② B. ①③ C. ②④ D. ③④
9.
以下四个条件中,能得到互相垂直关系的有( )
①对顶角的平分线;
②平行线截得的一组同旁内角的平分线;
③平行线截得的一组同位角的平分线;
④平行线截得的一组内错角的平分线.
①对顶角的平分线;
②平行线截得的一组同旁内角的平分线;
③平行线截得的一组同位角的平分线;
④平行线截得的一组内错角的平分线.
A.1个 | B.2个 | C.3个 | D.4个 |
10.
观察图中正方形四个顶点所标的数字规律,可知,数2016应标在( )


A.第504个正方形的左下角 | B.第504个正方形的右下角 |
C.第505个正方形的左上角 | D.第505个正方形的右下角 |
2.填空题- (共3题)
3.解答题- (共8题)
14.
如图,已知A,B分别为数轴上的两点,点A表示的数是﹣30,点B表示的数是50.

(1)请写出线段AB中点M表示的数是 .
(2)现有一只蚂蚁P从点B出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一只蚂蚁Q恰好从点A出发,以每秒2个单位长度的速度沿数轴向右移动,设两只蚂蚁在数轴上的点C相遇.
①求A、B两点间的距离;
②求两只蚂蚁在数轴上的点C相遇时所用的时间;
③求点C对应的数是多少?
(3)若蚂蚁P从点B出发,以每秒3个单位长度的速度沿数轴向左运动,同时另一只蚂蚁恰好从A点出发,以每秒2个单位长度的速度沿数轴也向左运动,设两只蚂蚁在数轴上的D点相遇,求D点表示的数是多少?

(1)请写出线段AB中点M表示的数是 .
(2)现有一只蚂蚁P从点B出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一只蚂蚁Q恰好从点A出发,以每秒2个单位长度的速度沿数轴向右移动,设两只蚂蚁在数轴上的点C相遇.
①求A、B两点间的距离;
②求两只蚂蚁在数轴上的点C相遇时所用的时间;
③求点C对应的数是多少?
(3)若蚂蚁P从点B出发,以每秒3个单位长度的速度沿数轴向左运动,同时另一只蚂蚁恰好从A点出发,以每秒2个单位长度的速度沿数轴也向左运动,设两只蚂蚁在数轴上的D点相遇,求D点表示的数是多少?
17.
某超市在春节期间对顾客实行优惠,规定如下:
(1)王老师一次性购物600元,他实际付款_____元.
(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款_____元,当x大于或等于500元时,他实际付款____元.(用含x的代数式表示).
(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的代数式表示:两次购物王老师实际付款多少元?
一次性购物 | 优惠办法 |
少于200元 | 不予优惠 |
低于500元但不低于200元 | 九折优惠 |
500元或超过500元 | 其中500元部分给予九折优惠,超过500元部分给予八折优惠 |
(1)王老师一次性购物600元,他实际付款_____元.
(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款_____元,当x大于或等于500元时,他实际付款____元.(用含x的代数式表示).
(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的代数式表示:两次购物王老师实际付款多少元?
18.
如图,O是直线AB上一点,OD平分∠AOC.
(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数.
(2)若∠AOD和∠DOE互余,且∠AOD=
∠AOE,请求出∠AOD和∠COE的度数.
(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数.
(2)若∠AOD和∠DOE互余,且∠AOD=


20.
如图,已知∠1=∠2,∠3=∠4,∠5=∠A,试说明:BE∥CF.
完善下面的解答过程,并填写理由或数学式:
解:∵∠3=∠4(已知)
∴AE∥ ( )
∴∠EDC=∠5( )
∵∠5=∠A(已知)
∴∠EDC= ( )
∴DC∥AB( )
∴∠5+∠ABC=180°( )
即∠5+∠2+∠3=180°
∵∠1=∠2(已知)
∴∠5+∠1+∠3=180°( )
即∠BCF+∠3=180°
∴BE∥CF( ).
完善下面的解答过程,并填写理由或数学式:
解:∵∠3=∠4(已知)
∴AE∥ ( )
∴∠EDC=∠5( )
∵∠5=∠A(已知)
∴∠EDC= ( )
∴DC∥AB( )
∴∠5+∠ABC=180°( )
即∠5+∠2+∠3=180°
∵∠1=∠2(已知)
∴∠5+∠1+∠3=180°( )
即∠BCF+∠3=180°
∴BE∥CF( ).

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(3道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:10
7星难题:0
8星难题:6
9星难题:3